Repercussions of microplastics and nanoplastics on the gastrointestinal, circulatory and respiratory systems: A new potential for exposure

Authors

DOI:

https://doi.org/10.33448/rsd-v13i2.44992

Keywords:

Microplastic; Nanoplastic; Cell damage; Respiratory; Cardiovascular.

Abstract

Objective: Understand the forms of contamination and the consequences of microplastics and nanoplastics for the gastrointestinal, respiratory and cardiovascular systems. Methods: Integrative review using the Pubmed, SciELO, LILACS and Cochrane database platforms. The research was carried out using the search strategy: (“human health”) AND (“cell interaction”) OR (“microplastics”). A total of 489 articles were found. After applying the inclusion and exclusion criteria, 25 articles were selected, with 20 articles being removed after the initial analysis. This totaled 5 articles for full analysis. Results: Extensive damage from plastic particles to human health is evident. In the gastrointestinal system, increased local inflammation causes barrier dysfunction and reduced digestion of certain macromolecules. In the respiratory system, the reduction in mucociliary clearance leads to an increase in pathogens and a retention of debris, coming from external air, in the lung. In the cardiovascular system, changes in heart rate, as well as an increased risk of thrombosis are findings due to the presence of MPs and NPs. Conclusion: An integrated view of the damage caused by MPs and NPs and their interactions with human cells is concluded, but there is still no great evidence that allows us to assess the full extent of the damage. 

References

ATSDR. (2014). Toxicological Profile for Styrene. Agency for Toxic Substances and Disease Registry (ATSDR). https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=421&tid=74.

Alqahtani, S., Alqahtani, S., Saquib, Q., & Mohiddin, F. (2023). Toxicological impact of microplastics and nanoplastics on humans: understanding the mechanistic aspect of the interaction. Frontiers in toxicology, 5, 1193386. https://doi.org/10.3389/ftox.2023.1193386.

Amato-Lourenço, L. F., Dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health?. The Science of the total environment, 749, 141676. https://doi.org/10.1016/j.scitotenv.2020.141676.

Cheng, Y., Yang, S., Yin, L., Pu, Y., & Liang, G. (2023). Recent consequences of micro-nanaoplastics (MNPLs) in subcellular/molecular environmental pollution toxicity on human and animals. Ecotoxicology and environmental safety, 249, 114385. https://doi.org/10.1016/j.ecoenv.2022.114385.

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human Consumption of Microplastics. Environmental science & technology, 53(12), 7068–7074. https://doi.org/10.1021/acs.est.9b01517.

Dong, X., Liu, X., Hou, Q., & Wang, Z. (2023). From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. The Science of the total environment, 855, 158686. https://doi.org/10.1016/j.scitotenv.2022.158686.

European Parliament, & Council of the European Union. (2008). Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy.

Fournier, E., Etienne-Mesmin, L., Grootaert, C., Jelsbak, L., Syberg, K., Blanquet-Diot, S., & Mercier-Bonin, M. (2021). Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. Journal of hazardous materials, 415, 125632. https://doi.org/10.1016/j.jhazmat.2021.125632.

Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., Schulz, H., Semmler, M., Im Hof, V., Heyder, J., & Gehr, P. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental health perspectives, 113(11), 1555–1560. https://doi.org/10.1289/ehp.8006.

Gori, T., & Münzel, T. (2011). Oxidative stress and endothelial dysfunction: therapeutic implications. Annals of medicine, 43(4), 259–272. https://doi.org/10.3109/07853890.2010.543920.

Haldar, S., Muralidaran, Y., Míguez, D., Mulla, S. I., & Mishra, P. (2023). Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. The Science of the total environment, 861, 160571. https://doi.org/10.1016/j.scitotenv.2022.160571.

Hollóczki, O., & Gehrke, S. (2020). Can Nanoplastics Alter Cell Membranes?. Chemphyschem : a European journal of chemical physics and physical chemistry, 21(1), 9–12. https://doi.org/10.1002/cphc.201900481.

Kole, P. J., Löhr, A. J., Van Belleghem, F. G. A. J., & Ragas, A. M. J. (2017). Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. International journal of environmental research and public health, 14(10), 1265. https://doi.org/10.3390/ijerph14101265.

Liang, B., Zhong, Y., Huang, Y., Lin, X., Liu, J., Lin, L., Hu, M., Jiang, J., Dai, M., Wang, B., Zhang, B., Meng, H., Lelaka, J. J. J., Sui, H., Yang, X., & Huang, Z. (2021). Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Particle and fibre toxicology, 18(1), 20. https://doi.org/10.1186/s12989-021-00414-1.

Liu, S., Wu, X., Gu, W., Yu, J., & Wu, B. (2020). Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. Chemosphere, 256, 127204. https://doi.org/10.1016/j.chemosphere.2020.127204.

Olivatto, G. P., Carreira, R., Tornisielo, V. L., & Montagner, C. C. (2018). Microplásticos: Contaminantes de preocupação global no Antropoceno. Revista Virtual de Química, 10(6), 1968-1989.

Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D'Amore, E., Rinaldo, D., Matta, M., & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment international, 146, 106274. https://doi.org/10.1016/j.envint.2020.106274.

Ries, F. (2018). REPORT on the proposal for a directive of the European Parliament and of the Council on the reduction of the impact of certain plastic products on the environment (Document No. A8-0317/2018). European Parliament. Retrieved from https://www.europarl.europa.eu/doceo/document/A-8-2018-0317_EN.html.

Sampaio, R. F., & Mancini, M. C. (2007); Estudos de Revisão Sistemática: Um guia para síntese criteriosa da evidência científica. Rev. bras. fisioter., São Carlos, 11 (01), 83-89.

Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., Mousazadeh, M., & Tiwari, A. (2022). A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine pollution bulletin, 181, 113832. https://doi.org/10.1016/j.marpolbul.2022.113832.

Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of Various Microplastics in Human Stool: A Prospective Case Series. Annals of internal medicine, 171(7), 453–457. https://doi.org/10.7326/M19-0618.

Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental advances, 5, 100119. https://doi.org/10.1016/j.envadv.2021.100119.

Soltani, N. S., Taylor, M. P., & Wilson, S. P. (2022). International quantification of microplastics in indoor dust: prevalence, exposure and risk assessment. Environmental pollution (Barking, Essex : 1987), 312, 119957. https://doi.org/10.1016/j.envpol.2022.119957.

Sun, N., Shi, H., Li, X., Gao, C., & Liu, R. (2023). Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. Environment international, 171, 107711. https://doi.org/10.1016/j.envint.2022.107711.

Wright, S. L., & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue?. Environmental science & technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423.

Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., Li, Y., & Zhang, H. (2019). Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. The Science of the total environment, 694, 133794. https://doi.org/10.1016/j.scitotenv.2019.133794.

Yang, W., Jannatun, N., Zeng, Y., Liu, T., Zhang, G., Chen, C., & Li, Y. (2022). Impacts of microplastics on immunity. Frontiers in toxicology, 4, 956885. https://doi.org/10.3389/ftox.2022.956885.

Zhao, Y., Liu, S., & Xu, H. (2023). Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review. Chemosphere, 326, 138486. https://doi.org/10.1016/j.chemosphere.2023.138486.

Zhu, X., Wang, C., Duan, X., Liang, B., Genbo Xu, E., & Huang, Z. (2023). Micro- and nanoplastics: A new cardiovascular risk factor?. Environment international, 171, 107662. https://doi.org/10.1016/j.envint.2022.107662.

Published

11/02/2024

How to Cite

SILVA, R. M. A. da .; CAMPOS, C. M. C. G. Q. .; MOTA, A. B.; TENÓRIO, C. P. F. .; SCHIAVI, D. .; MENEZES, G. X. de .; ASSIS, H. P. de .; SALERNO, P. R. .; RODRIGUES, S. M. .; COSTA, Y. D. . Repercussions of microplastics and nanoplastics on the gastrointestinal, circulatory and respiratory systems: A new potential for exposure . Research, Society and Development, [S. l.], v. 13, n. 2, p. e4013244992, 2024. DOI: 10.33448/rsd-v13i2.44992. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/44992. Acesso em: 11 may. 2024.

Issue

Section

Health Sciences