Numerical modelling and its physical modelling support in Civil Engineering




Construction works; Growing risks; Safety requirements; Hybrid modelling.


Currently, there is a progressive divestment of some institutions with strong traditions and skills in physical modelling and their consequent impoverishment, to the detriment of numerical modelling. For many reasons, the economic imperatives and the exponential growth of computational means and numerical methods should certainly not be excluded. In this work, the author aimed to highlight the new requirements of the recent sophisticated developments in physical modelling, precisely due to the new needs imposed on them by mathematical and numerical modelling and the growing risks in civil construction works. In this context, reflections are reported, justified by scientific and real-world examples, on the need for maintenance and reinforcement of investments in physical modelling, both to support the scientific community and to design buildings of significant economic, social and environmental impact.


Ahrens, C. D., & Henson, R. (2016). Weather Forecasting. In Essentials of Meteorology: An Invitation to the Atmosphere, (8th ed.), Ahrens, C. D., Henson, R., Eds., Cengage Learning: Boston, MA, USA, 1, 242–270.

Al-Janabi, A. M. S., Ghazali, A. H., Ghazaw, Y. M., Afan, H. A., Al-Ansari, N., & Yaseen, Z. M. (2020). Experimental and Numerical Analysis for Earth-Fill Dam Seepage. Sustainability, 12(2490). doi:10.3390/su12062490

Antunes do Carmo, J. S. (2013a). Boussinesq and Serre type models with improved linear dispersion characteristics: Applications. J. Hydraul. Res., 51, 719–727. doi:10.1080/00221686.2013.814090

Antunes do Carmo, J. S. (2013b). Extended Serre Equations for Applications in Intermediate Water Depths. Open Ocean Eng. J., 6, 16–25. doi:10.2174/1874835×01306010016

Antunes do Carmo, J. S. (2016). Nonlinear and dispersive wave effects in coastal processes. J. Integr. Coast. Zone Manag., 16, 343–355. doi:10.5894/rgci660

Antunes do Carmo, J. S. (2020). Coastal Defenses and Engineering Works. In: Leal Filho W., Azul A., Brandli L., Lange Salvia A., Wall T. (eds) Life Below Water. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. doi:10.1007/978-3-319-71064-8_7-1

Antunes do Carmo, J. S., Ferreira, J. A., & Luís Pinto, L. (2019). On the accurate simulation of nearshore and dam break problems involving dispersive breaking waves. Wave Motion, 85, 125–143. doi:10.1016/j.wavemoti.2018.11.008

Antunes do Carmo, J. S., Pinho, J. L. S., & Vieira, J. M. P. (2010). Oil Spills in Coastal Zones: Predicting Slick Transport and Weathering Processes. Open Ocean Eng. J., 3, 129–142. doi:10.2174/1874835x01003010129

Argyropoulos, C. D., & Markatos, N. C. (2015). Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model., 39, 693–732. doi:10.1016/j.apm.2014.07.001

Augustyn A., et al. (2020). The Editors of Encyclopædia Britannica. Three Gorges Dam. Retrieved July 15, 2020, from

Briggs, M. J. (2013). Basics of Physical Modeling in Coastal and Hydraulic Engineering; ERDC/CHL CHETN-XIII-3; US Army Corps of Engineers: Washington, DC, USA, p. 11.

Carreiras, J., Antunes do Carmo, J., & Seabra-Santos, F. (2003). Settlement of vertical piles exposed to waves. Coast. Eng., 47, 355–365. doi:10.1016/S0378-3839(02)00142-4

Castro Orgaz, O., & Chanson, H. (2020). Undular and broken surges in dam break fows: A review of wave breaking strategies in a Boussinesq type framework. Environ. Fluid Mech. doi:10.1007/s10652-020-09749-3

Chen, Z., & Chen, B. (2014). Recent Research and Applications of Numerical Simulation for Dynamic Response of Long-Span Bridges Subjected to Multiple Loads. Sci. World J., 2014. 17, doi:10.1155/2014/763810

Chen, H., & Christensen, E. D. (2017). Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. Ocean Eng., 142, 597–615. doi:10.1016/j.oceaneng.2017.07.033

Coastal Wiki (2020). Scaling Issues in Hydraulic Modelling. Retrieved from

Demir, A., Dincer, A. E., Bozkus, Z. & Tijsseling, A. S. (2019). Numerical and experimental investigation of damping in a dam-break problem with fluid-structure interaction. J. Zhejiang Univ. Sci. A, 20, 258–271. doi:10.1631/jzus.A1800520

Deshande, S.S., Trujillo, M. F., Wu, X., & Chahine, G. (2012). Computational and experimental characterization of a liquid jet plunging into a quiescent pool at shallow inclination. Int. J. Heat Fluid Flow, 34, 1–14. doi:10.1016/j.ijheatfluidflow.2012.01.011

Diana, G., Fiammenghi, G., Belloli, M,. & Rocchi, D. (2013). Wind tunnel tests and numerical approach for long span bridges: The Messina bridge. J. Wind Eng. Ind. Aerodyn., 122, 38–49. doi:10.1016/j.jweia.2013.07.012

Diana, G., Rocchi, D., & Belloli, M. (2015). Wind tunnel: A fundamental tool for long-span bridge design. Struct. Infrastruct. Eng., 11, 533–555. doi:10.1080/15732479.2014.951860

Duró. G., Crosato, A., & Tassi, P. (2016). Numerical study on river bar response to spatial variations of channel width. Adv. Water Resour., 93, 21–38. doi:10.1016/j.advwatres.2015.10.003

Farsirotou, E. D., & Kotsopoulos, S. I. (2015). Free-Surface Flow Over River Bottom Sill: Experimental and Numerical Study. Environ. Process., 2, 133–139. doi:10.1007/s40710-015-0090-6

Gao, F., Wang, H., & Wang, H. (2017). Comparison of different turbulence models in simulating unsteady flow. Procedia Eng., 205, 3970–3977. doi:10.1016/j.proeng.2017.09.856

Google_bridge (2020). Longest Suspension Bridge in the World—Akashi Kaikyo Bridge. Retrieved from

Google_dam (2020). The Physical Model of no. 3 Powerhouse-Dam Section of the Three-Gorges Dam. Retrieved from China%2C-Liu-Feng/895247023ba961db9d14c5fdf9542c2 2c487c601/figure/31

Google_model (2020). The Complete Model of the Akashi Kaikyo Bridge and the Boundary Layer Wind Tunnel. Retrieved from /publication/281550286/figure/fig21/AS:645733061509130@1530966167268/2-The-complete-model-of-the-Akashi-Kaikyo-Bridge-and-the-boundary-layer-wind-tunnel.png

Gregoretti, C., Maltauro, A., & Lanzoni, S. (2010). Laboratory Experiments on the Failure of Coarse Homogeneous Sediment Natural Dams on a Sloping Bed. J. Hydraul. Eng., 136, 868–879. doi:10.1061/(ASCE)HY.1943-7900.0000259

Harry, M., Zhang, H., Lemckert, C., & Colleter, G. (2014). Measurement of the Scale Effect on Breaking Waves. In Proceedings of the Eleventh Pacific/Asia Offshore Mechanics Symposium, Shanghai, China, 12–16 October.

Heller, V. (2011). Scale effects in physical hydraulic engineering models. J. Hydraul. Res., 49, 293–306. doi:10.1080/00221686.2011.578914

Hinze, J. O. (1975). Turbulence, 2nd ed.; McGraw-Hill: New York, NY, USA.

Hirt, C., & Nichols, B. (1981). Volume of fluid method for the dynamics of free boundaries. J. Comput. Phys., 39, 201–225. doi:10.1016/0021-9991(81)90145-5

Jabbari, M., Bulatova, R., Hattel, J. H., & Bahl, C. R. H. (2014). An evaluation of interface capturing methods in a VOF based model for multiphase flow of a non-Newtonian ceramic in tape casting. Appl. Math. Model., 38, 3222–3232.

Kang, S., & Sotiropoulos, F. (2015). Numerical study of flow dynamics around a stream restoration structure in a meandering channel. J. Hydraul. Res., 53, 178–185. doi:10.1080/00221686.2015.1023855

Liu, J.; Feng, X.-T., & Ding, X.-L. (2003a). Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modelling - Part II: Numerical modeling. Int. J. Rock Mech. Min. Sci., 40, 633–652. doi:10.1016/S1365-1609(03)00056-X

Liu, J., Feng, X.-T., Ding, X.-L., Zhang, J., & Yue, D.-M. (2003b). Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modelling - Part I: Physical model tests. Int. J. Rock Mech. Min. Sci., 40, 609–631. doi:10.1016/S1365-1609(03)00055-8

Mali, V. K., & Kuiry, S. N. (2020). Experimental and numerical study of flood in a river-network-floodplain set-up. J. Hydraul. Res. (online). doi:10.1080/00221686.2019.1698471

Marques, J. C. (2014). Experimental modelling vs. numerical simulation in geotechnical training. In Proceedings of the IEEE Global Engineering Education Conference (EDUCON), Istanbul, Turkey. 991–994. Retrieved from

Miyata, T., Yamada, H., Katsuchi, H., & Kitagawa, M. (2002). Full-scale measurement of Akashi–Kaikyo Bridge during typhoon. J. Wind Eng. Ind. Aerodyn., 90, 1517–1527. doi:10.1016/S0167-6105(02)00267-2

Miyata, T., & Yamaguchi, K. (1993). Aerodynamics of wind effects on 31 (accessed on July the Akashi Kaikyo Bridge. J. Wind Eng. Ind. Aerodyn., 48, 287–315. doi:10.1016/0167-6105(93)90142-B

Nguyen, H. T., Ahn, J., & Park, S. W. (2018). Numerical and Physical Investigation of the Performance of Turbulence Modeling Schemes around a Scour Hole Downstream of a Fixed Bed Protection. Water, 10(103). doi:10.3390/w10020103

Ninot, C. G., Mendes, L., Viseu, T., Vicent, J. G., Carrero, A. D., González, J. O., Domínguez, O. H., Iglesias, F. R., & Gutiérrez, E. R. (2015). Experimental and Numerical Study of a Chute Spillway. In Proceedings of the Second International Dam World Conference, Lisbon, Portugal, 21–24 April.

Over VLIZ (2020). Scaling Issues in Hydraulic Modelling. Retrieved from

Pinho, J. L. S., Antunes do Carmo, J. S., & Vieira, J. M. P. (2004a). Mathematical modelling of oil spills in the Atlantic Iberian coastal waters. In Coastal Environment V, Incorporating Oil Spill Studies; WIT Transactions on Ecology and the Environment. Brebbia, C. A., Saval Perez, J. M., Andion, L. G., Eds.; WITPRESS: Southampton, UK, 68, 337–347.

Pinho, J. L. S., Vieira, J. M. P., & Antunes do Carmo, J. S. (2004b). Hydroinformatic environment for coastal waters hydrodynamics and water quality modelling. Adv. Eng. Soft, 35, 205–222. doi:10.1016/j.advengsoft.2004.01.001

Rodi, W. (1980). Turbulence Models and Their Applications in Hydraulics: A State of the Art Review; IAHR: Delft, The Netherlands.

Saidani, M., & Shibani, A. (2014). Use of Physical and Numerical Models in Engineering Design Education. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bali, Indonesia, 7–9 January.

Scharnke, J., Bunnik, T., Düz, B., Bandringa, H., Hallmann, R., & Helder, J. (2020). Linking Experimental and Numerical Wave Modelling. J. Mar. Sci. Eng., 8(26). doi:10.3390/jmse8030198

Tsoukala, V. K., Katsardi, V., Hdjibiros, K., & Moutzouris, C.I. (2015). Beach Erosion and Consequential Impacts Due to the Presence of Harbours in Sandy Beaches in Greece and Cyprus. Environ. Process., 2, 55–71. doi:10.1007/s40710-015-0096-0

Wang. W. Q., & Yan, Y. (2010). Fluid-Structure Interaction Analysis of Flexible Plate with Partitioned Coupling Method. Appl. Math. Model., 34, 3817–3830. doi:10.1016/j.apm.2010.03.022

Wilson, D., Iacovides, H., & Craft, T. (2019). Assessment of RANS Turbulence Model Performance in Tight Lattice LWR Fuel Subchannels. In Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11),

World Register of Introduced Marine Species (2020). Scaling Issues in Hydraulic Modelling. Retrieved from ydraulic_Modelling

Xiang, Q., Wei, K., Qiu, F., Yao, C., & Li, Y. (2020). Experimental Study of Local Scour around Caissons under Unidirectional and Tidal Currents. Water, 12(18). doi:10.3390/w12030640




How to Cite

CARMO, J. S. A. do . Numerical modelling and its physical modelling support in Civil Engineering. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5019108409, 2020. DOI: 10.33448/rsd-v9i10.8409. Disponível em: Acesso em: 25 jun. 2022.



Education Sciences