Management of gummosis in citrus with potassium phosphite




Citrus sunki; Alternative control; Phytophthora nicotianae; Phytopathology.


This work aimed to evaluate the potassium phosphite-based commercial product, Phytogard®, as a complementary tool for the management of gummosis in citrus. Seedlings of tangerine ‘Sunki’ were sprayed at concentrations 0; 0.5; 2 and 5 mL L-1 of Phytogard® and subsequently inoculated with zoospores of Phytophthora nicotianae. The disease incidence was reduced by 84% in plants sprayed at the concentration 0.5 mL L-1 and the plants sprayed at concentrations of 2 and 5 mL L-1 showed zero disease incidence. There was increased an production of fresh matter of shoot and roots in plants sprayed and inoculated with the pathogen compared to unsprayed plants. Plants sprayed with Phytogard® and inoculated with the pathogen showed lower values for total phenols, enzyme activity for phenylalanine ammonia-lyase and peroxidase and for total protein content in root tissues compared to non-inoculated plants. There was higher activity of the enzyme β 1.3-glucanase in root tissues of plants inoculated with the pathogen that received the product at the concentration of 2 mL L-1. The results of this study showed that the potassium phosphite-based product Phytogard® has potential for the control of Phytophthora nicotianae in seedlings of tangerine ‘Sunki’. However, it is not possible to conclude that this control occurs through resistance induction.


Abeles, F. B., & Foence, L. E. (1970). Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris. Plant Physiology, 45, 305-400.

Araujo, L., Silva Bispo, W. M., Rios, V. S., Fernandes, A. S., & Rodrigues F. A. (2015). Induction of the Phenylpropanoid Pathway by Acibenzolar-S-Methyl and Potassium Phosphite Increases Mango Resistance to Ceratocystis fimbriata Infection. Plant Disease, 99, 447-459.

Beltrame, A. B. (2010). Interação Phytophthora nicotianae – porta enxerto de citros (Tangerina Sunki e Citrumelo Swingle): Efeito no sistema radicular, aspectos fisiológicos e bioquímicos. Tese de Doutorado, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo. Piracicaba, São Paulo.

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.

Carswell, S. C., Grant, B. R., Theodorou, M. E., Harris, J., Niere, J. O., & Plaxton, W. C. (1996). The fungicide phosphonate disrupts the phosphate starvation response in Brassica nigra seedlings. Plant Physiology, 110, 105-110.

Cohen, M. D., & Coffey, M. D. (1986). Systemic fungicides and the control of oomycetes. Annual Review Phytopathology, 24, 311-338.

Dalio, R. J. D., Ribeiro Junior, P. M., Resende, M. L. V., Silva, A. C., Blumer, S., Pereira, V. F., Osswald, W., & Pascholati, S. F. (2012). O triplo modo de ação dos fosfitos em plantas. In: Luz, W. C. (Org.). Revisão Anual de Patologia de Plantas, 20, 206-242.

Dalio, R. J. D., Fleischmann, F., Humez, M., & Wolfgang, O. (2014). Phosphite protects Fagus sylvatica seedlings towards Phytophthota plurivora via local toxicity, priming and facilitation of pathogen recognition. Plos One, 9, 1-10.

Dias-Arieria, C. R., Marini, P. M., Fontana, L. F., Roldi, M., & Silva, T. R. B. (2012). Effect of Azospirillum brasilense, Stimulate® and Potassium Phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica, 42, 170-175.

Feichtenberger, E., Bassanezi, R. B., Spósito, M. B., & Belasque Júnior, J. (2005). Doenças dos Citros. In: Kimati, H., Amorim, L., Rezende, J. A. M., Bergamin Filho, A., & Camargo, L. E. A. (Ed.). Manual de Fitopatologia (pp. 239-269). São Paulo: Editora Agronômica Ceres.

Fleischmann, F., Koehl, J., Portz, R., Beltrame, A. B., & Osswald, W. (2005). Physiological changes of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin “Citricolin” to pathogenesis. Plant Biology, 6, 650–658.

Forster, H., Adaskaveg, J. E., Kim, D. H., & Stanghellin, M. E. (1998). Effect of phosphite on tomato and peper plants on susceptibility of peper to Phytophthora root and crown rot in hydroponic culture. Plant Disease, 82, 1165-1170.

Fundecitrus (2004). Prevenção começa na muda. Revista do Fundecitrus, 123, 12-13.

Graham, J. H., & Timmer, L. W. (1994). Phytophthora diseases of Citrus. Available at Acessed on 24 November, 2019.

Gottstein, H. D., & Kuć, J. (1989). Induction of systemic resistance to anthracnose in cucumber by phosphates. Phytopathology, 79, 176–179.

Guest, D., & Grant, B. R. (1991). The complex action of phosphonates as antifungal agents. Biological Review, 66, 159-187.

Kombrink, E., & Hahlbrock, K. (1986). Responses of cultured parsley cells to elicitors from phytopathogenic fungi. Plant Physiology, 81, 216-221.

Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169, 1417-1424.

Mucharromah, E., & Kuć, J. (1991). Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber. Crop Protection, 10, 265–270.

Nascimento, A. R., Fernandes, P. M., Rocha, M. R., & Silva, E. A. (2008). Fontes de fosfito e acibenzolar-s-me¬til no controle de doenças e produtividade do tomatei¬ro. Bioscience Journal, 24, 53-59.

Ohammadi, M. A., Zhang, Z., Xi, Y., Han, H., Lan, F., Zhang, B., Wang, P., & Ruski, G. (2019). Effects of potassium phosphite on biochemical contents and enzymatic activities of Chinese Potatoes inoculated by Phytophthora infestans. Applied Ecology and Environmental Research, 17, 4499-4514.

Olivieri, F. P., Feldman, M. L., Machinandiarena, M. F., Lobato, M. C., Caldiz, D. O., Daleo, G.R., & Andreu, A. B. (2012). Phosphite applications induce molecular modifications in potato tuber periderm and cortex that enhance resistance to pathogens. Crop Protection, 32, 1-6.

Orober, M., Siegrist, J., & Buchenauer, H. (2002). Mechanisms of Phosphate-induced Disease Resistance in Cucumber. European Journal of Plant Pathology, 108, 345–353.

Reuveni, R., Agapov, V., & Reuveni, M. (1994). Foliar spray of phosphates induces groth increase and systemic resistance to Puccinia sorghi in maize. Plant Pathology, 43, 245–250.

Rey-Burusco, M. F., Daleo, G. R., & Feldman, M. L. (2019). Identification of potassium phosphite responsive miRNAs and their targets in potato. PlosOne, 12, 1-15.

Rezende, D. C., Brandão, D. F. R., Brand, S. C., Blumer, S., Pascholati, S. F., & Mafra, N. M. (2020). Fosfito de potássio e suas implicações no controle de Phytophthora plurivora em faia. Research, Society and Development, 9 (10), e5629108824.

Roncato, M. C., & Pascholati, S. F. (1998). Alterações na atividade e no perfil eletroforético da peroxidase em folhas de milho (Zea mays) e sorgo (Sorghum bicolor) tratadas com levedura (Saccharomyces cerevisae). Scientia Agricola, 55, 395-402.

Schroetter, S., Angeles-Wedler, D., Kreuzig, R., & Schnug, E. (2006). Effects of phosphite on phosphorus supply and growth and growth of corn (Zea mays). Landbauforschung Volkenrodxe, 56, 87-99.

Umesha, S. (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34, 68-71.

Varadarajan, D. K., Karthikeyan, A. S., Matilda, P. D., & Raghothama, K. G. (2002). Phosphite, an analog of phosphate suppresses the coordinated expression of genes under phosphate starvation. Plant Physiology, 129, 1232-1240.




How to Cite

REZENDE, D. C.; BRANDÃO, D. F. R.; BRAND, S. C.; BLUMER, S.; PASCHOLATI, S. F.; MAFRA, N. M. Management of gummosis in citrus with potassium phosphite . Research, Society and Development, [S. l.], v. 9, n. 10, p. e7199108992, 2020. DOI: 10.33448/rsd-v9i10.8992. Disponível em: Acesso em: 31 may. 2023.



Agrarian and Biological Sciences