Optimization of the extraction process of compounds with antioxidant activity of tommy atkins mango peel





Tommy Atkins; Antioxidant potential; Sequential experimental planning strategy.


It is well known that vegetable residues from the food industry can be used as a possible source for the extraction of compounds with antioxidant activity; in the case of mango, approximately 40 to 60% of the total mass of the fruit is considered as residue after processing. This work focused on the optimization of the extraction process of compounds with antioxidant activity from the rind of Tommy Atkins mango. Initially a Fractional Factorial Design 25-1 (FFD) was applied to study the effect of five variables on the extraction process, namely: extraction time (min), percentage of ethanol in aqueous solution (%), pH, dry/solvent mango peel ratio (g/mL) and ultrasound power range (%). The variables extraction time and dry/solvent mango peel ratio were selected, which were evaluated sequentially by the application of a Central Composite Rotatable Design (CCRD) to determine the conditions of maximum extraction of antioxidant compounds by the response surface analysis. The ABTS•+ and Folin-Ciocalteu methods were used for the quantification of the antioxidant activity.  The maximum extraction occurred with the use of water, extraction time of 30 min, dry mango peel/solvent ratio of g/mL (1:100), at natural pH of the mixture (pH 4.6 ± 0.20) and sonication amplitude at 50%. It was possible to develop an extraction process of compounds with antioxidant activity from the mango peel, in order to maximize yield through the use of non-toxic solvents and using an agro-industrial residue as raw material.


Adegbola, P. I., Adetutu, A., & Olaniyi, T. D. (2020). Antioxidant activity of Amaranthus species from the Amaranthaceae family – A review. South African Journal of Botany, 133, 111–117. https://doi.org/10.1016/j.sajb.2020.07.003

Agatonovic-Kustrin, S., Kustrin, E., & Morton, D. W. (2018). Phenolic acids contribution to antioxidant activities and comparative assessment of phenolic content in mango pulp and peel. South African Journal of Botany, 116, 158–163. https://doi.org/10.1016/j.sajb.2018.03.013

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102

Albuquerque, B. R., Prieto, M. A., Barriro, M. F., Rodrigues, A., Curran, T. P., Barros, L., & Ferreira, I. C. F. R. (2016). Catechin-based extract optimizaiotn obtained from Arbustus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial Crops & Products, xxx(xx), xx. https://doi.org/10.1016/j.indcrop.2016.10.050

Barbulova, A., Colucci, G., & Apone, F. (2015). New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics, 2(2), 82–92. https://doi.org/10.3390/cosmetics2020082

Both, S., Koudous, I., Jenelten, U., & Strube, J. (2014). Model-based equipment-design for plant-based extraction processes - Considering botanic and thermodynamic aspects. Comptes Rendus Chimie, 17(3), 187–196. https://doi.org/10.1016/j.crci.2013.11.004

Caleja, C., Barros, L., Antonio, A. L., Oliveira, M. B. P. P., & Ferreira, I. C. F. R. (2017). A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chemistry, 216, 342–346. https://doi.org/10.1016/j.foodchem.2016.08.075

Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

Fonseca, J. S., & Martins, G. de A. (2011). Curso de Estatística (p. 318). Atlas S.A. https://doi.org/ISBN 978-85-224-1471-0

Gentile, C., Di Gregorio, E., Di Stefano, V., Mannino, G., Perrone, A., Avellone, G., Sortino, G., Inglese, P., & Farina, V. (2019). Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chemistry, 277, 471–479. https://doi.org/10.1016/j.foodchem.2018.10.109

Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60–72. https://doi.org/10.1016/j.bej.2008.10.006

Gómez-Maldonado, D., Lobato-Calleros, C., Aguirre-Mandujano, E., Leyva-Mir, S. G., Robles-Yerena, L., & Vernon-Carter, E. J. (2020). Antifungal activity of mango kernel polyphenols on mango fruit infected by anthracnose. Lwt, 126(December 2019), 109337. https://doi.org/10.1016/j.lwt.2020.109337

Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455–461. https://doi.org/10.1016/j.foodres.2018.12.011

Haaland, P. D. (1989). EXPERIMENTAL DESIGN IN BIOTECHNOLOGY. Drying Technology, 9(3), 817. https://doi.org/10.1080/07373939108916715

Huang, C. Y., Kuo, C. H., Wu, C. H., Kuan, A. W., Guo, H. R., Lin, Y. H., & Wang, P. K. (2018). Free Radical-Scavenging, Anti-Inflammatory, and Antibacterial Activities of Water and Ethanol Extracts Prepared from Compressional-Puffing Pretreated Mango (Mangifera indica L.) Peels. Journal of Food Quality, 2018. https://doi.org/10.1155/2018/1025387

Lavilla, I., & Bendicho, C. (2017). Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds: From Plants to Drug Development (pp. 291–316). https://doi.org/10.1016/B978-0-12-809380-1.00011-5

Lim, K. J. A., Cabajar, A. A., Lobarbio, C. F. Y., Taboada, E. B., & Lacks, D. J. (2019). Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. Journal of Food Science and Technology, 56(5), 2536–2544. https://doi.org/10.1007/s13197-019-03732-7

Luo, J., Fang, Z., & Smith, R. L. (2014). Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 41(1), 56–93. https://doi.org/10.1016/j.pecs.2013.11.001

Moreira-Araújo, R. S. D. R., Barros, N. V. D. A., Porto, R. G. C. L., Brandão, A. de C. A. S., de Lima, A., & Fett, R. (2019). Bioactive compounds and antioxidant activity three fruit species from the Brazilian Cerrado. Revista Brasileira de Fruticultura, 41(3), 0–2. https://doi.org/10.1590/0100-29452019011

Mugwagwa, L. R., & Chimphango, A. F. A. (2019). Box-Behnken design based multi-objective optimisation of sequential extraction of pectin and anthocyanins from mango peels. Carbohydrate Polymers, 219(October 2018), 29–38. https://doi.org/10.1016/j.carbpol.2019.05.015

Nyangena, I. O., Owino, W. O., Imathiu, S., & Ambuko, J. (2019). Effect of pretreatments prior to drying on antioxidant properties of dried mango slices. Scientific African, 6, e00148. https://doi.org/10.1016/j.sciaf.2019.e00148

Pal, C. B. T., & Jadeja, G. C. (2019). Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Science and Technology International. https://doi.org/10.1177/1082013219870010

Poomanee, W., Chaiyana, W., Mueller, M., Viernstein, H., Khunkitti, W., & Leelapornpisid, P. (2018). In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes. Anaerobe, 52, 64–74. https://doi.org/10.1016/j.anaerobe.2018.05.004

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved Abts Radical. 26(98), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rodrigues, M. I., & Iemma, A. F. P. P.-C. (2014). Planejamento de experimentos e otimização de processos. Casa do Espírito Amigo Fraternidade Fé e Amor.

Rodrigues, S., Fernandes, F. A. N., de Brito, E. S., Sousa, A. D., & Narain, N. (2015). Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Industrial Crops and Products, 69, 400–407. https://doi.org/10.1016/j.indcrop.2015.02.059

Santos, L., Carvalho, F. De, Pereira, I., Santos, D., & Pereira, D. (2018). Gestão de resíduos da manga ( Mangifera indica ): análise bibliométrica e sistêmica da literatura. X Simpósio de Engenharia de Produção de Sergipe, 2018, 525–536.

Silva, R. W. V. da, Martins, G. M. G., Nascimento, R. A. do, Viana, A. F. da S., Aguiar, F. S. de, & Silva, B. A. da. (2019). Uso da metodologia de superfície de resposta na otimização da extração de compostos fenólicos da casca dos frutos de Hymenaea courbaril L. (Jatobá). Brazilian Journal of Food Technology, 22, 1–13. https://doi.org/10.1590/1981-6723.08918

Sogi, D. S., Siddiq, M., & Dolan, K. D. (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT - Food Science and Technology, 62(1), 564–568. https://doi.org/10.1016/j.lwt.2014.04.015

Vardanega, R., Santos, D. T., & De Almeida, M. A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 8(16), 88–95. https://doi.org/10.4103/0973-7847.134231

Ye, C. L., & Jiang, C. J. (2011). Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydrate Polymers, 84(1), 495–502. https://doi.org/10.1016/j.carbpol.2010.12.014




How to Cite

VELOSO , F. da S. .; COLLA, E.; GENENA, A. K. . Optimization of the extraction process of compounds with antioxidant activity of tommy atkins mango peel. Research, Society and Development, [S. l.], v. 9, n. 10, p. e9939109273, 2020. DOI: 10.33448/rsd-v9i10.9273. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/9273. Acesso em: 28 jun. 2022.



Agrarian and Biological Sciences