Chemical characterization of eleven Latin America woods
DOI:
https://doi.org/10.33448/rsd-v14i10.49714Keywords:
Extractives, Lignin, Holocellulose, Ash, Higher heating value.Abstract
The forests of Latin America are home to diverse species of interest regarding the chemical constituents of wood. This calls for a comprehensive study of all wood characteristics, including their chemical characteristics. This article aimed to characterize the essential chemicals of 11 Latin American native forest species. From wood samples of trees more than 20 years of age, we determined the contents of total extractives, total lignin, holocellulose, and ash, as well as higher heating value. The usual standards were applied in each analysis. Analysis of variance and the Bonferroni test were used to determine differences among variables in each species. In all characteristics, the results varied among the different species. When compared with the results of other studies, we found that the differences in wood chemistry could be explained by differences in collection sites, soil composition or tree age. The main contribution and novelty of this study lies in disseminating to a wide number of professionals the variations found in the chemical constituents of the wood studied. Therefore, it is anticipated that the data revealed in this study will be of interest to scientific researchers and timber specialists alike.
References
Alves, E.S., Longui, E.L. & Amano, E. (2008). Pernambuco Wood (Caesalpinia echinata) used in the manufacture of bows for string instruments. IAWA J. 29(3), 323-335. https://brill.com/view/journals/iawa/29/3/article-p323_9.xml.
American Society for Testing and Materials - ASTM. (1998). Standard test method for gross calorific value of coal and coke. ASTM D5865–98. Philadelphia.
Amorim, E.P., Melo, R.A.P., Yamaji, F.M. & Longui, E.L. (2020). Bioenergy potential of 30-year-old Balfourodendron riedellianum (Engl.) Engl. and 32-year-old Peltophorum dubium (Spreng.) Taub. wood from homogeneous plantations. Rev. Inst. Flor. 32(2), 117-127. http://dx.doi.org/10.24278/2178-5031.202032201.
Amorim, E.P., Menucelli, J.R., Germano, A.D., Faria, R.F.P., Barbosa, J.A., Pádua, F.A., Freitas, M.L.M., Moraes, M.A., Cambuim, J., Moraes, M.L.T., Gonçalves, P.S. & Longui, E.L. (2021). Technological potential of fibers from 20 Hevea brasiliensis clones for use as pulp, paper, and composite materials. Res., Soc. Dev. 10(10), e549101019102. https://doi.org/10.33448/rsd-v10i10.19102.
Artemio, C.P., Maginot, N.H., Serafín, C.U., Rahim, F.P., Guadalupe, R.Q.J. & Fermín, C.M. (2018). Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. Plant Biol., PeerJ 6:e5504. https://doi.org/10.7717/peerj.5504.
Batista, A.C.G., Gomes, R.M., Sarto, C., Silva Junior, F.G. & Souza, M.J.R. (2018). Caracterização química de três espécies florestais Eucalyptus spp., Schizolobium amazonicum e Genipa americana para inserção nos processos de polpação. Simpósio 50 anos do IPEF, Piracicaba, São Paulo, Brasil. https://www.ipef.br/publicacoes/anais/anais-simposioIPEF50anos.pdf.
Botosso, P.C. (2009). Identificação macroscópica de madeiras: guia prático e noções básicas para o seu reconhecimento. Embrapa Florestas, Colombo, Brasil.
Britannica, The Editors of Encyclopaedia. (2023). "lignin". Encyclopedia Britannica.: https://www.britannica.com/science/lignin.
Browning, G.L. (1967). Methods in Wood Chemistry. Wiley Interscience, New York, USA.
Campelo, S., Iwakiri, S., Trianoski, R. & Aguiar, O.M. (2017). Utilização da madeira de Genipa americana para produção de painéis de colagem lateral - Egp. Floresta 47(1), 129-135. http://dx.doi.org/10.5380/rf.v47i1.48453.
Carli, S.D., Cunha, A.A., D’Angelo Rios, P. & Brand, M.A. (2016). Análise da qualidade de madeiras brasileiras para a produção de barris para o envelhecimento de vinhos finos. https://www1.udesc.br/arquivos/id_submenu/2550/04.analise_da_qualidade_de_madeiras_brasileiras_para_a_producao_de_barris_para_o_envelhecimento_de_vinhos_finos.pdf
Cavalcante, A.M., Ribeiro Junior, K.A.L., Ximenes, E.C.P.A., Silva, Z.P., Reis, J.I.L. & Santana, A.E.G. (2017). Antimicrobial activity of Annona crassiflora Mart. against Candida albicans. J. Med. Plant Res. 11(13): 253-259. https://doi.org/10.5897/JMPR2017.6333.
Costa, A.C.S., Oliveira, A.C., Freitas, A.J., Leal, C.S. & Pereira, B.L.C. (2017). Qualidade do carvão vegetal para cocção de alimentos comercializado em Cuiabá - MT. Nativa 5(6): 456-461. https://doi.org/10.31413/nativa.v5i6.4679.
Costa Neto, P. L. & Bekman, O. R. (1993). Análise Estatística da Decisão. Editora Blücher.
Dias, M.C., Silva, E.J., Celestino, P.C.G., Nascimento, A.K.V., Moura Costa, R.F., Silva, B. H. & Barreto, L.P. (2013). XIII Jornada de Ensino, Pesquisa e Extensão – JEPEX 2013 – UFRPE, Recife, Brasil.
Evert, R.F. & Esau, K. (2013). Anatomia das Plantas de Esau: meristemas, células e tecidos do corpo da planta: sua estrutura, função e desenvolvimento. Blucher, São Paulo, Brasil.
FAO. (2024). Global Forest sector outlook 2050. Assessing future demand and sources of timber for a sustainable economy – Background paper for The State of the World’s Forests 2022. FAO Forestry Working Paper, No. 31: Rome. https://www.fao.org/documents/card/en?details=cc2265en.
Farias, F.O.M. (2012). Caracterização de biomassas brasileiras para fins de aproveitamento energético. Dissertação de mestrado, Universidade Estadual de Campinas, Campinas, Brasil. https://hdl.handle.net/20.500.12733/1617536.
Fonte, A.P.N., Trianoski, R., Iwakiri, S. & Anjos, R.A.M. (2017). Propriedades físicas e químicas da madeira de cerne e alburno de Cryptomeria japonica. Rev. de Cienc. Agrovet. 16, 277. https://doi.org/10.5965/223811711632017277.
Hassegawa, M., Karlberg, A., Hertzberg, M. & Verkerk, P. J. (2022). Innovative forest products in the circular bioeconomy. ORE 2, 19. https://doi.org/10.12688/openreseurope.14413.2.
Hillis, W.E. (1996). Formation of robinetin crystals in vessels of Intsia species. IAWA J. 17(4), 405-419. https://brill.com/view/journals/iawa/17/4/article-p405_6.xml?ebody=pdf-96202.
Hon, D.N.S. & Shiraishi, N. (2000). Wood and Cellulosic Chemistry. CRC Press, Boca Raton, USA.
Hurmekoski, E., Lovrić, M., Lovrić, N., Hetemäki, L. & Winkel, G. (2019). Frontiers of the forest-based bioeconomy - A European Delphi Study. For. Policy Econ. 102, 86-99. https://doi.org/10.1016/j.forpol.2019.03.008.
Inovação Tecnológica. (2024). Nanotecnologia da madeira promete superar plásticos. https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=nanocelulose-nanotecnologia-madeira&id=010165120828#.W4bFcc5KjIU.
Kiaei, M., Kord, B., & Vaysi, R. (2014). Influence of residual lignin content on physical and mechanical properties of kraft pulp/pp composites. Maderas, Cienc. tecnol. 16(4), 495-503. https://doi.org/10.4067/S0718-221X2014005000040.
Klock, U., Muniz, G.I.B. & Andrade, S. (2005). Química da Madeira. UFPR/ SCA/ DETE, Curitiba, Brasil.
Lobão, M.S., Castro, V.R., Rangel, A., Sarto, C., Tomazello Filho, M., Silva Júnior, F. G., Camargo Neto, L. & Bermudez, M.A.R.C. (2011). Agrupamento de espécies florestais por análises univariadas e multivariadas das características anatômica, física e química das suas madeiras. Sci. For. 39(92), 469-477. https://www.ipef.br/publicacoes/scientia/nr92/cap10.pdf.
Longui, E.L., Moureira, J.A., Lombardi, D.R., Silva Júnior, F.G. & Alves, E.S. (2017). Potential use of Libidibia ferrea and Poincianella pluviosa woods for bows of string instruments. Eur. J. Wood Prod. 76, 357-368. https://doi.org/10.1007/s00107-017-1187-6.
Małachowska, E., Dubowik, M., Boruszewski, P., Łojewska, J. & Przybysz, P. (2020). Influence of lignin content in cellulose pulp on paper durability. Sci Rep 10, 19998. https://doi.org/10.1038/s41598-020-77101-2.
Menucelli, J.R., Amorim, E.P., Freitas, M.L.M., Zanata, M., Cambuim, J., Moraes, M.L.T., Yamaji, F.M., Silva Júnior, F.G. & Longui, E.L. (2019). Potential of Hevea brasiliensis clones, Eucalyptus pellita and Eucalyptus tereticornis wood as raw materials for bioenergy based on Higher Heating Value. Bioenergy Res. 12, 992-999. https://doi.org/10.1007/s12155-019-10041-6.
Minato, K., Sakai, K., Matsunaga, M. & Nakatsubo, F. (1997). The vibrational properties of wood impregnated with extractives of some species of Leguminosae. Mokuzai Gakkaishi 43, 1035-1037.
Oliveira, I.R., Botaro, V.R., Almeida, M.A., Longui. E.L., Lima, I.L., Florsheim, S.M.B. & Zanatto, A.C.S. (2012). Chemical Characterization of Handroanthus vellosoi Wood. Rev. Inst. Flor. 24(1): 67-73. https://smastr16.blob.core.windows.net/iflorestal/ifref/RIF24-1/RIF24-1_67-73.pdf.
Pereira, A.S., Shitsuka, D.M., Parreira, F.J. & Shitsuka R. (2018). Metodologia da pesquisa científica. [free ebook]. Editora da UFSM, Santa Maria.
Pettersen, R.C. (1984). The Chemical Composition of Wood. In: Rowell, R. (Ed.). Advances in chemistry series. Washington, USA.
Quirino, W.F., Vale, A.T., Andrade, A.D., Abreu, V.L.S. & Azevedo, A.D.S. (2005). Poder calorífico da madeira e de materiais ligno-celulósicos. Rev. Madeira 2005, 89: 100-106. https://www.lippel.com.br/dados/download/05-05-2014-10-46poder-calorifico-da-madeira-e-de-materiais-ligno-celulosicos.pdf
Romero, F.B., Vargas, M.E., Neves, M.F.S. (1985). Calorific Power Determination in Regional Woods. Quím. Nova 8(3), 189-190. https://s3.sa-east-1.amazonaws.com/static.sites.sbq.org.br/quimicanova.sbq.org.br/pdf/Vol8No3_189_v08_n3_%2814%29.pdf.
Rowell, R.M. (2013). Handbook of Wood Chemistry and Wood Composites, CRC Press, Boca Raton, USA.
Sakai, K., Matsunaga, M., Minato, K. & Nakatsubo, F. (1999). Effects of impregnation of simple phenolic and natural polycyclic compounds on physical properties of wood. J. Wood Sci. 45, 227-232. https://doi.org/10.1007/BF01177730.
Santos, V.B. (2021). Qualidade das madeiras de Astronium fraxinifolium Schott e Enterolobium gummiferum (Mart.) J.F.Macbr. para produção de carvão vegetal. Dissertação de Mestrado, Universidade Federal de Minas Gerais, Minas Gerais, Brasil. http://hdl.handle.net/1843/36267.
Schimleck, L.R., Espey, C., Mora, C.R., Evans, R., Taylor, A. & Muniz, G.I.B. (2009). Characterization of the wood quality of pernambuco (Caesalpinia echinata Lam) by measurements of density, extractives content, microfibril angle, stiffness, color, and NIR spectroscopy. Holzforschung 63(4), 457-463. https://doi.org/10.1515/HF.2009.082.
Senalik, C.A. & Farber, B. (2021). Mechanical Properties of Wood. In: Wood handbook - wood as an engineering material. Ross, R.J.; Anderson, J.R. (Eds.). Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, USA. https://www.fs.usda.gov/research/treesearch/62262.
Shitsuka, C.D.W.M., Shitsuka, D.M., Shitsuka, R.I.C.M. & Shitsuka, R. (2014). Matemática fundamental para tecnologia. (2ed). Editora Érica.
SigmaPlot. SigmaPlot -Version 14.5. (2023). Systat Software: San Jose.
Silva, A.LS. (2018). Determinação do teor de cinzas em dez espécies de madeiras amazônicas. Graduação em Engenharia Florestal, Universidade do Estado do Amazonas, Amazonas, Brasil. http://repositorioinstitucional.uea.edu.br/bitstream/riuea/1484/1/Determina%C3%A7%C3%A3o%20do%20teor%20de%20cinzas%20em%20dez%20esp%C3%A9cies%20de%20madeiras%20amaz%C3%B4nicas.pdf.
Silva, C.C.R.D., Silva, C.E.S., Gomes, F.J.B., Batalha, L.A.R., Martins, B.C., Carvalho, P.C.L., Neves Junior, O.F., Trigueiro, J.L. & Carvalho, A.M. (2021). Propriedades tecnológicas da madeira de cerne e alburno de pau-brasil (Paubrasilia echinata). In: Madeiras nativas e plantadas do Brasil. Evangelista, W.V. (Ed.). Científica Digital, Guarujá, Brasil.
Silva, C.E.S., Martins, B.C., Carvalho, P.C.L., Reis, C.A., Maciel, N.S.R., Pereira, M. G., Gomes, F.J.B., Rolim, S.G., Piotto, Carvalho, A.M. & D. Latorraca, J.V.F. (2021). Caracterização física, mecânica e de trabalhabilidade de madeiras de seis espécies da Mata Atlântica. In: Madeiras nativas e plantadas do Brasil. Evangelista, W.V. (Ed.). Científica Digital, Guarujá, Brasil.
Silva, J.P. & Evangelista, W.V. (2021). Propriedades físico-anatômicas de madeiras de cedro amazonense e tamarindo e suas correlações. In: Madeiras nativas e plantadas do Brasil. Evangelista, W.V. (Ed.). Científica Digital, Guarujá, Brasil.
Silva, K.E. (2005). Jacareúba Calophyllum brasiliense Cambess. Embrapa, Manaus, Brasil.
Silva, L.L.H., Oliveira, E., Calegari, L., Pimenta, M.C. & Dantas, M.K.L. (2017). Características dendrométricas, físicas e químicas da Myracrodruon urundeuva e da Leucaena leucocephala. Floresta e Ambient. 24: e20160022. http://dx.doi.org/10.1590/2179-8087.002216.
Technical Association of the Pulp and Paper Industry - Tappi standard (2004). T 204 om-97: solvent extractives of wood and pulp. TAPPI Press: Norcross.
Technical Association of the Pulp and Paper Industry - Tappi standard (2002). T 222 om-02: acid-insoluble lignin in wood and pulp. TAPPI Press: Norcross.
Technical Association of the Pulp and Paper Industry - Tappi standard (1985). T 257 cm-85: sampling and preparing wood for analysis. Tappi Technical Divisions and Committees: Atlanta.
Technical Association of the Pulp and Paper Industry - Tappi Standard (1991). T 211 om-91: ash in wood, pulp, paper and paperboard: combustion at 525°C. TAPPI Press: Atlanta.
Telmo, C. & Lousada, J. (2011). Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35(7), 2634-2639. https://doi.org/10.1016/j.biombioe.2011.02.043.
Utad. (2023). Jardim Botânico-Ficha da espécie: Carpinus betulus. https://jb.utad.pt/especie/Carpinus_betulus.
Vale, A.T.D., Sarmento, T.R. & Almeida, A.N. (2005). Caracterização e uso de madeiras de galhos de árvores provenientes da arborização de Brasília, DF. Cienc. Florest. 15(4), 411-420. https://doi.org/10.5902/198050981878.
van den Broek, R., van Wijk, A. & Turkenburg, W. (2000). Farm-based versus industrial Eucalyptus plantations for electricity generation in Nicaragua. Biomass Bioenergy 19(5), 295-310. https://doi.org/10.1016/S0961-9534(00)00035-0.
Verkerk, P.J., Hassegawa, M., Van Brusselen, J., Cramm, M., Chen, X., Maximo, Y.I., Koç, M. Lovrić, M. & Tegegne, Y.T. (2022). Forest products in the global bioeconomy: Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. FAO: Rome. https://doi.org/10.4060/cb7274en.
Wiedenhoeft, A. & Eberhardt, T. L. (2021). Structure and Function of Wood. In: Wood handbook - wood as an engineering material. Ross, R.J.; Anderson, J.R. (Eds.). Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, USA. https://www.fs.usda.gov/research/treesearch/62262.
Yang, X. (2019). Eco-friendly Holocellulose Materials for Mechanical Performance and Optical Transmittance. Ph.D Thesis, KTH Royal Institute of Technology, Stockholm, Sweden. https://kth.diva-portal.org/smash/get/diva2:1364953/FULLTEXT01.pdf.
Zanuncio, A.J.V. & Colodette, J.L. (2011). Teores de lignina e ácidos urônicos na madeira e polpa celulósica de Eucalipto. Rev. Árvore 35(2), 341-347. https://doi.org/10.1590/S0100-67622011000200018.
Zenid, G.J. (1997). Espécies nativas com potencial madeireiro e moveleiro. Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT, São Paulo, Brasil.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eduardo Luiz Longui, Caroline Cristine Cavalheiro, Raissa Sartori Martins dos Santos, Gabrielli Viana, Eduardo Leite de Almeida, Erick Phelipe Amorim, Israel Luiz de Lima, Mario Luiz Teixeira de Moraes, Fábio Minoru Yamaji, Francides Gomes da Silva Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
