Inhalational anesthetic agents in small animals: Efficacy, safety, and challenges in the use of isoflurane, sevoflurane, and desflurane

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50254

Keywords:

Veterinary anesthesiology , Environmental sustainability, Anesthetic safety, Animal welfare, Oxidative stress.

Abstract

Inhalational anesthesia is central to routine small animal surgery, allowing precise control of anesthetic depth and predictable recovery. Among the most commonly used volatile agents are isoflurane, sevoflurane, and desflurane, whose pharmacological, clinical, economic, and environmental profiles guide their selection. The objective of this study is to analyze the use of these anesthetics in veterinary practice, describing pharmacological characteristics, comparing clinical efficiency (induction, maintenance, and recovery), evaluating safety (well-being and perioperative risks), and discussing challenges/advances, identifying gaps for research. A narrative review was conducted in the PubMed, SciELO, and Google Scholar databases, including studies in Portuguese and English that address efficacy, safety, cost, and environmental aspects in dogs and cats; standardized extraction and descriptive-comparative analysis of the findings. In the results, sevoflurane generally presents faster induction and recovery and a good cardiorespiratory profile, favoring pediatric, geriatric, or clinically unstable patients; isoflurane maintains widespread use due to its lower cost, although with slower induction/recovery and a greater propensity for hypotension in prolonged or critical scenarios; desflurane offers very rapid awakening, but can irritate the airways and requires greater investment (agent and vaporizer), restricting its diffusion. In terms of sustainability, all contribute to emissions; desflurane has a greater climate impact, and iso/sevo has a smaller, but still relevant, impact. It is concluded that there is no universally superior agent; the choice should be contextual and guided by safety, cost-effectiveness, and environmental mitigation. Institutional protocols, rigorous monitoring, and multicenter studies are recommended to qualify anesthetic decisions in small animals.

References

Andersen, M. P. S., Jensen, M. T., McGain, F., & Nielsen, O. J. (2023). Assessing the potential climate impact of anaesthetic gases. The Lancet Planetary Health, 7(5), e422–e430.

Arain, S. R., Shankar, H., & Ebert, T. J. (2005). Desflurane enhances reactivity during the use of the laryngeal mask airway. Anesthesiology, 103(3), 495–499.

Cubeddu, F., Masala, G., Sotgiu, G., Mollica, A., Versace, S., & Careddu, G. M. (2023). Cardiorespiratory effects and desflurane requirement in dogs undergoing ovariectomy after administration of maropitant or methadone. Animals, 13(14), 2388.

Elzahaby, D., et al. (2024). Inhalational anaesthetic agent consumption within a multidisciplinary veterinary hospital: Environmental implications and comparative use of isoflurane and sevoflurane. Scientific Reports, 14, Article 68157.

Grubb, T., Sager, J., Gaynor, J. S., Montgomery, E., Parker, J. A., Shafford, H., & Tearney, C. (2020). 2020 AAHA anesthesia and monitoring guidelines for dogs and cats. Journal of the American Animal Hospital Association, 56(2), 59–82.

Hofmeister, E. H., Brainard, B. M., Sams, L. M., Allman, D. A., & Cruse, A. M. (2008). Evaluation of induction characteristics and hypnotic potency of isoflurane and sevoflurane in healthy dogs. American Journal of Veterinary Research, 69(4), 451–456.

Iizuka, T., Kamata, M., Yanagawa, M., & Nishimura, R. (2013). Incidence of intraoperative hypotension during isoflurane–fentanyl and propofol–fentanyl anaesthesia in dogs. The Veterinary Journal, 198(1), 289–291.

Jimenez Lozano, A., Brodbelt, D. C., Borer, K. E., Armitage-Chan, E., Clarke, K. W., & Alibhai, H. I. K. (2009). A comparison of the duration and quality of recovery from isoflurane, sevoflurane and desflurane anaesthesia in dogs undergoing magnetic resonance imaging. Veterinary Anaesthesia and Analgesia, 36(3), 220–229.

Ko, J. C., et al. (2024). Electroencephalographic and cardiovascular changes during isoflurane anesthesia in dogs. Veterinary Sciences, 11(10), 514.

Lopez, L. A., Hofmeister, E. H., Pavez, J. C., & Brainard, B. M. (2009). Comparison of recovery from anesthesia with isoflurane, sevoflurane, or desflurane in healthy dogs. American Journal of Veterinary Research, 70(11), 1339–1344.

Moody, A. E., Griffiths, K. N., & Shah, A. (2020). Predicting cost of inhalational anesthesia at low fresh gas flows. Cureus, 12(12), e12255.

Mutoh, T., Taki, Y., & Tsubone, H. (2013). Desflurane but not sevoflurane augments laryngeal C-fiber inputs to nucleus tractus solitarii neurons by activating transient receptor potential-A1. Life Sciences, 92(14–16), 821–828.

Nishimura, R., Matsunaga, S., Nakamura, M., & Kazuto, Y. (2024). Comparison of the effects of sevoflurane and isoflurane anesthesia on physiological parameters and recovery in dogs. Frontiers in Veterinary Science, 11, Article 11476279.

Oliveira, C. (2025). Documento de consenso da Sociedade Europeia de Anestesiologia e Cuidados Intensivos sobre sustentabilidade 4 âmbitos para alcançar uma prática mais sustentável. Revista da Sociedade Portuguesa de Anestesiologia, 33 (4).

Ones, H., et al. (2024). Incidence of and risk factors for poor recovery quality in dogs recovering from general anaesthesia: A prospective case–control study. Veterinary Anaesthesia and Analgesia. Advance online publication.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria: Editora da UFSM

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Santiago, A. C. A., Carreira, R. M. P. M. P. F., Oliveira, D. O. A., & Sampaio de, H. M. (2024). Estudo comparativo dos efeitos dos anestésicos voláteis Isoflurano e Sevoflurano nos parâmetros de vitalidade e sobrevivência em cachorros nascidos por cesariana [Dissertação de Mestrado]. Repositório Digital de Publicações Científicas.

Sherman, J., Le, C., Ashraf, J., & Lamers, V. (2012). Life cycle greenhouse gas emissions of anesthetic drugs. Anesthesia & Analgesia, 114(5), 1086–1090.

Talbot, A., Donroe, J. H., Apfelbaum, J. L., & Sherman, J. (2025). Greenhouse gas impact from medical emissions of volatile anaesthetic agents. The Lancet Planetary Health, 9(2), eXX–eXX.

Tomsič, K., & Nemec Svete, A. (2022). A mini-review of the effects of inhalational and intravenous anesthetics on oxidative stress in dogs. Frontiers in Veterinary Science, 9, 987536.

Varughese, S., Ahmed, R., & McGain, F. (2021). Environmental and occupational considerations of anesthesia: A narrative review and update. Anesthesia & Analgesia, 133(4), 826–835.

Published

2025-12-04

Issue

Section

Agrarian and Biological Sciences

How to Cite

Inhalational anesthetic agents in small animals: Efficacy, safety, and challenges in the use of isoflurane, sevoflurane, and desflurane. Research, Society and Development, [S. l.], v. 14, n. 12, p. e25141250254, 2025. DOI: 10.33448/rsd-v14i12.50254. Disponível em: https://www.rsdjournal.org/rsd/article/view/50254. Acesso em: 5 dec. 2025.