Non-Compaction Cardiomyopathy: Advances in imaging diagnosis and prognostic implications
DOI:
https://doi.org/10.33448/rsd-v14i12.50458Keywords:
Non-compaction cardiomyopathy, Diagnostic imaging, Prognosis.Abstract
Non-compaction cardiomyopathy (NCM) is a cardiomyopathy characterized by prominent myocardial trabeculations and deep intertrabecular recesses, associated with high clinical and prognostic heterogeneity. The aim of this study is to analyze advances in diagnostic imaging methods for non-compaction cardiomyopathy, with emphasis on the contributions of echocardiography and cardiac magnetic resonance imaging, as well as to discuss their prognostic implications in clinical practice. Diagnosing this condition is a challenge, especially given the variability of morphological criteria and the overlap with physiological patterns of ventricular trabeculation. In this context, cardiovascular imaging methods play a central role in the identification, characterization, and risk stratification of patients. Echocardiography remains the initial assessment tool, while cardiac magnetic resonance imaging stands out for its greater diagnostic accuracy and tissue characterization capabilities, including the detection of myocardial fibrosis through late gadolinium enhancement. Recent advances, such as myocardial strain analysis, three-dimensional techniques, and artificial intelligence applications, have contributed to greater diagnostic accuracy and better prognostic assessment. The integration of structural, functional, and tissue parameters has proven fundamental in differentiating benign forms from presentations associated with a higher risk of heart failure, arrhythmias, and adverse cardiovascular events, reinforcing the importance of a multiparametric approach in the management of non-compaction cardiomyopathy.
References
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Fenandes, J. M. B., Vieira, L. T. & Castelhano, M. V. C. (2023). Revisão narrativa enquanto metodologia científica significativa: reflexões técnico-formativas. REDES – Revista Educacional da Sucesso. 3(1), 1-7. ISSN: 2763-6704.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Jenni, R.; Oechslin, E. & van der Loo, B. (2007). Isolated ventricular non-compaction of the myocardium in adults. Heart, 93(1), 11–15.
Oechslin, E. N. & Jenni, R. (2011). Left ventricular non-compaction revisited: a distinct cardiomyopathy or a variant of hypertrophic cardiomyopathy? Heart, 97(10), 772–777.
Petersen, S. E.; Selvanayagam, J. B.; Wiesmann, F.; Robson, M. D.; Francis, J. M.; Anderson, R. H. & Neubauer, S. (2005). Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. Journal of the American College of Cardiology, 46(1), 101–105.
Stollberger, C. & Finsterer, J. (2004). Left ventricular hypertrabeculation/noncompaction. Journal of the American Society of Echocardiography, 17(1), 91–100.
Towbin, J. A.; Lorts, A. & Jefferies, J. L. (2015). Left ventricular non-compaction cardiomyopathy. The Lancet, 386(9995), 813–825.
Aras, D.; Tufekcioglu, O.; Ergun, K.; Ozeke, O.; Yildiz, A.; Topaloglu, S. & Korkmaz, S. (2006). Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. Journal of Cardiac Failure, 12(9), 726–733.
Captur, G.; Nihoyannopoulos, P. & McKenna, W. J. (2013). Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. International Journal of Cardiology, 168(2), 1140–1147.
Pignatelli, R. H.; McMahon, C. J.; Dreyer, W. J.; Denfield, S. W.; Price, J.; Belmont, J. W. & Towbin, J. A. (2003). Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation, 108(21), 2672–2678.
Habib, G.; Charron, P.; Eicher, J. C.; Giorgi, R.; Donal, E.; Laperche, T. & Cohen, A. (2011). Isolated left ventricular non-compaction in adults: clinical and echocardiographic features in 105 patients. Journal of the American College of Cardiology, 57(6), 659–667.
Gati, S.; Chandra, N.; Bennett, R. L.; Reed, M.; Kervio, G.; Panoulas, V. F. & Sharma, S. (2013). Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular noncompaction in athletes? Heart, 99(6), 401–408.
Grothoff, M.; Pachowsky, M.; Hoffmann, J.; Posch, M.; Klaassen, S.; Lehmkuhl, L. & Gutberlet, M. (2012). Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. European Radiology, 22(12), 2699–2709.
Stacey, R. B.; Andersen, M. M.; Haag, J.; Hall, M. E.; McNally, S. & Hundley, W. G. (2013). Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. JACC: Cardiovascular Imaging, 6(8), 931–940.
Grigoratos, C.; Barison, A.; Ivanov, A.; Andreini, D.; Amzulescu, M. S.; Mazurkiewicz, L. & Masci, P. G. (2019). Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC: Cardiovascular Imaging, 12(11), 2141–2151.
van Waning, J. I.; Caliskan, K.; Michels, M. & Majoor-Krakauer, D. (2019). Cardiac phenotypes, genetics, and risks in familial noncompaction cardiomyopathy. Journal of the American College of Cardiology, 73(13), 1601–1611.
Sedaghat-Hamedani, F.; Haas, J.; Zhu, F.; Geier, C.; Kayvanpour, E.; Liss, M. & Meder, B. (2017). Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. European Heart Journal, 38(46), 3449–3460.
Andreini, D.; Pontone, G.; Bogaert, J.; Roghi, A.; Barison, A.; Schwitter, J. & Lombardi, M. (2016). Long-term prognostic value of cardiac magnetic resonance in left ventricular noncompaction: a prospective multicenter study. Journal of the American College of Cardiology, 68(20), 2166–2181.
Klaassen, S.; Probst, S.; Oechslin, E.; Gerull, B.; Krings, G.; Schuler, P. & Thierfelder, L. (2008). Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation, 117(22), 2893–2901.
Peters, F.; Khandheria, B. K. & Libhaber, E. (2012). Left ventricular noncompaction: clinical features, pathogenesis, diagnosis, and management. Cardiology in Review, 20(2), 90–96.
Ichida, F. (2009). Left ventricular noncompaction. Circulation Journal, 73(1), 19–26.
Jensen, B.; van der Wal, A. C.; Moorman, A. F. M. & Christoffels, V. M. (2014). Excessive trabeculations in noncompaction do not have embryonic identity. Circulation, 130(10), 802–805.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 João Victor Falcão Batista, Maria Vitória Vargas Breves, Guilherme Gabriel Torres Valente, Luis Thadeu Rebouças Santos, Felipe Pereira Lordão, Thauan Castelo Branco Ferreira Carvalho, Edson Gomes de Jesus Santos, José Henrique Gorgone Zampieri, Hannah Julia Brandão Medina Dolher Souza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
