Selección in silico de compuestos semiáridos de Bahía para identificar inhibidores potenciales de la proteína MAPK p38

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i10.8723

Palabras clave:

Simulación del acoplamiento molecular, Inflamación, Proteínas quinasas p38 activadas por mitógenos.

Resumen

La proteína p38 participa en la síntesis de citocinas proinflamatorias IL1 y TNF-alfa, principalmente, siendo importante en el mantenimiento y la amplificación del proceso inflamatorio. Por lo tanto, esta proteína presenta alto potencial como diana farmacológica en la búsqueda de nuevos tratamientos para las enfermedades inflamatorias. Una forma rápida y barata las nuevas moléculas bioactivas de descubrimiento es mediante la realización de estudios in silico. El objetivo de este estudio es la identificación de compuestos de moléculas semiáridos noreste con potencial actividad inhibidora de la proteína p38 MAPK, a través de acoplamiento molecular. La estructura cristalográfica de la proteína se obtuvo sobre la base de datos de macromoléculas Protein Data Bank. Las moléculas semiáridas del noreste se obtuvieron de la base de datos de ZINC. Entre las moléculas disponibles en la base de datos, se seleccionaron sólo 233 estudios de acoplamiento molecular, una vez que encajan en los parámetros de la regla de Lipinski y Verber. El acoplamiento se llevó a cabo utilizando el programa Autodock Vina en su configuración predeterminada. El código de la molécula ZINC 69481892 fue seleccionado como prometedor con respecto a la inhibición de la proteína p38 MAPK, puesto que la energía de enlace con la p38 fue -11.1 Kcal.mol-1. El análisis de las interacciones intermoleculares demostró que las interacciones de Van der Waals son cruciales para la molécula ZINC 69481892 en el sitio activo de la proteína. Datos resultantes de los atraques son importantes, aunque tiene baja precisión. Así, los hipotéticos resultados de estos estudios in silico deben confirmarse por pruebas in vitro o in vivo.

Referencias

de Albuquerque, U. P., Muniz de Medeiros, P., de Almeida, A. L., Monteiro, J. M., Machado de Freitas Lins Neto, E., Gomes de Melo, J., & dos Santos, J. P. (2007). Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. Journal of ethnopharmacology, 114(3), 325–354.

doi: 10.1016/j.jep.2007.08.017

Alessandri, A. L., Sousa, L. P., Lucas, C. D., Rossi, A. G., Pinho, V., & Teixeira, M. M. (2013). Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacology & therapeutics, 139(2), 189–212.

doi: 10.1016/j.pharmthera.2013.04.006

Bahadori, M. B., Dinparast, L., Valizadeh, H., Farimani, M. M., & Ebrahimi, S. N. (2016). Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S Afr J Bot, 106:1–4. Retrieved from https://doi.org/10.1016/j.sajb.2015.12.003

Berman, H. M., Westbrook., J, Feng Z., Gilliland G., Bhat, T. N., Weissig. H, Shindyalov, I.N & Bourne, P.E. (2000). The Protein Data Bank Nucleic Acids Research, 28, 235-242.

doi: 10.1093/nar/28.1.235

BIOVIA., Dassault Systèmes. (2016). Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes. Retrieved from https://3ds.com/products-services/biovia/products

Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and molecular biology reviews: MMBR, 75(1), 50–83. https://doi.org/10.1128/MMBR.00031-10. doi: 10.1128/MMBR.00031-10

Caruso, R., Warner, N., Inohara, N., & Núñez, G. (2014). NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity, 41(6), 898–908. doi: 10.1016/j.immuni.2014.12.010

Choi, S. R., Beitz, A. J., & Lee, J. H. (2019). Inhibition of cytochrome P450c17 reduces spinal astrocyte activation in a mouse model of neuropathic pain via regulation of p38 MAPK phosphorylation. Biomedicine & Pharmacotherapy, 118 (109299). Retrieved from https://doi.org/10.1016/j.biopha.2019.109299.

Ferreira, L. G., Santos, R. N., Oliva, G. & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20 (7):13384-13421. doi: 10.3390/molecules200713384

Ferreira, R. S., Oliva, G., & Andricopulo, A. D. (2011). Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: oportunidades e desafios em p&d de fármacos. Química Nova, 34(10):1770-1778. Retrieved from http://submission.quimic anova.sbq.org.br/qn/qnol/2011/vol34n10/09-RV11050_cor.pdf

Firgany, A. E. L., & Sarhan, N. R. (2020). Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochemica, 122(5): 151554. Retrieved from https://doi.org/10.1016/j. acthis.2020.151554.

Gonçalves, J. M. (2015) Atividades biológicas e composição química dos óleos essenciais de Achyrocline satureoides (Lam) DC. E Ageratum conyzoides L. encontradas no semiárido baiano. Feira de Santana: Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, tese. Retrieved from http://tede2.uefs.br:8080/handle/tede/283

Guido, Rafael V. C., Andricopulo, Adriano D., & Oliva, Glaucius. (2010). Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados, 24(70), 81-98. Retrieved from https://dx.doi.org/10.1590/S0103-40142010000300006

Irwin, J. J. & Shoichet, B. K. (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model, 45(1):177-182. doi: 10.1021/ci049714+

Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. International immunology, 21(4), 317–337. doi: 10.1093/intimm/dxp017

Kazmi, S. R., Jun, R., Yu, M. S., Jung, C. & Na, D. (2019). In silico approaches and tools for the prediction of drug metabolism and fate: A review. Computers in Biology and Medicine, 106, 54–64. Retrieved from https://doi.org/10.1016/j.compbiomed.2019.01.008

Koeberle, S. C., Romir, J., Fischer, S., Koeberle, A., Schattel, V., Albrecht, W., Grütter, C., Werz, O., Rauh, D., Stehle, T., & Laufer, S. A. (2011). Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nature chemical biology, 8(2), 141–143. doi: 10.1038/nchembio.761

Kumar, V. (2019). Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol, 73:128-145. doi: 10.1016/j.intimp.2019.05.002

Lee, J. H., Lee, S. W., Choi, S. H., Kim, S. H., Kim, W. J., & Jung, J. Y. (2013). p38 MAP kinase and ERK play an important role in nitric oxide-induced apoptosis of the mouse embryonic stem cells. Toxicology in vitro: an international journal published in association with BIBRA, 27(1), 492–498. Retrieved from https://doi.org/10.1016/j.tiv.2012.07.007

Lima, A. C. B., Machado, A. L., Simon. P., Cavalcante, M. M., Rezende, D. C., & Sperandio da Silva G. M. (2011). Anti-inflammatory effects of LASSBio-998, a new drug candidate designed to be a p38 MAPK inhibitor, in an experimental model of acute lung inflammation. Pharmacol Rep, 63(4): 1029–1039. Retrieved from https://doi.org/10.1016/S1734-1140(11)70619-3

Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46 (1-3): 3-26. doi: 10.1016/s0169-409x(00)00129-0

Medzhitov R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. doi: 10.1038/nature07201

Ministério da Ciência e Tecnologia do Brasil. (2006). Rumo ao Amplo Conhecimento da Biodiversidade do Semi-árido Brasileiro. Brasília: Ministério da Ciência e Tecnologia. Retrieved from http:/livroaberto.ibict.br/handle/1/978

O'Donoghue, M. L., Glaser, R., Cavender, M. A., Aylward, P. E., Bonaca, M. P., Budaj, A., Davies, R. Y., Dellborg, M., Fox, K. A., Gutierrez, J. A., Hamm, C., Kiss, R. G., Kovar, F., Kuder, J. F., Im, K. A., Lepore, J. J., Lopez-Sendon, J. L., Ophuis, T. O., Parkhomenko, A., Shannon, J. B., LATITUDE-TIMI 60 Investigators (2016). Effect of Losmapimod on Cardiovascular Outcomes in Patients Hospitalized With Acute Myocardial Infarction: A Randomized Clinical Trial. JAMA, 315(15), 1591–1599. doi: 10.1001/jama.2016.3609.

Papaneophytou, C., Alexiou, P., Papakyriakou, A., Ntougkos, E., Tsiliouka, K., & Maranti, A. (2015). Synthesis and biological evaluation of potential small molecule inhibitors of tumor necrosis factor. Med Chem Commun, 6, 1196-1209. Retrieved from https://doi.org/10.1039/C5MD00023H

Ravindra, G. K., Achaiah, G., & Sastry, G. N. (2008). Molecular modeling studies of phenoxypyrimidinil imidazoles as p38 kinase inhibitors using QSAR and docking. Eur J Med Chem, 43(4): 830-838. doi: 10.1016/j.ejmech.2007.06.009

Rodrigues, R. P., Mantoani, S. P., De Almeida, J. R., Pinsetta, F. R., Semighini, E. P, Da Silva, V. B. & Da Silva, C. H. P. (2012). Estratégias de Triagem Virtual no Planejamento de Fármacos. Revista Virtual de Química, 4 (6), 739-736. doi: 10.5935/1984-6835.20120055

Sanner M. F. (1999). Python: a programming language for software integration and development. Journal of molecular graphics & modelling, 17(1), 57–61. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10660911/

Santana, M. T. P., dos Santos, T. A., Gomes, L. L., Oliveira, H. M. B. F. de, Guênes, G. M. T., Alves, M. A. S. G., Penha, E. S. da, Anjos, R. M. dos, Oliveira, V. F. de, Sousa, A. P. de, & Oliveira Filho, A. A. de. (2020). Evaluation of in silico toxicity of monoterpene ascaridol. Research, Society and Development, 9(5), e159953094. Retrieved from https://doi.org/10.33448/rsd-v9i5.3094

Shityakov, S. & Foerster, C. (2014). In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Advances and Applications in Bioinformatics and Chemistry, 7, 1-9. doi: 10.2147/AABC.S56046

Song, J., Pan, W., Sun, Y., Han, J., Shi, W., & Liao, W. (2017). Aspergillus fumigatus-induced early inflammatory response in pulmonary microvascular endothelial cells: Role of p38 MAPK and inhibition by silibinin. International Immunopharmacology, 49: 195-202. Retrieved from https://doi.org/10.1016/j.intimp.2017.05.038

Storch, K., Gehringer, M., Baur, B., & Laufer, S. A. (2014). Metabolism of a novel skepinone L-like p38 mitogen-activated protein kinase inhibitor. Med Chem Commun, 5:808-815. doi: 10.1039/C4MD00106K

Trentin, D., Giordani, R. B., Zimmer, K. R., da Silva, A. G., da Silva, M. V., Correia, M. T., Baumvol, I. J., & Macedo, A. J. (2011). Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of ethnopharmacology, 137(1), 327–335. doi: 10.1016/j.jep.2011.05.030

Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem, 31:455-461. doi: 10.1002/jcc.21334

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem, 45 (12): 2615 – 2623. doi: 10.1021/jm020017n

Zheng, M., Liu, X., Xu, Y., Li, H., Luo, C. & Jiang, H. (2013). Computational methods for drug design and discovery: focus on China. Trends Pharmacol Sci, 34 (10):549-559. doi: 10.1016/j.tips.2013.08.004

Descargas

Publicado

2020-10-04

Número

Sección

Ciencias Exactas y de la Tierra

Cómo citar

Selección in silico de compuestos semiáridos de Bahía para identificar inhibidores potenciales de la proteína MAPK p38. Research, Society and Development, [S. l.], v. 9, n. 10, p. e4439108723, 2020. DOI: 10.33448/rsd-v9i10.8723. Disponível em: https://www.rsdjournal.org/rsd/article/view/8723. Acesso em: 6 dec. 2025.