Epigenetic mechanisms of childhood sedentary behavior and cardiovascular risk in adulthood
DOI:
https://doi.org/10.33448/rsd-v14i10.49649Keywords:
Epigenomics, Cardiovascular Diseases, Growth and Development, Sedentary Behavior.Abstract
Epigenetics plays a fundamental role in regulating biological processes by modulating gene expression without altering the DNA sequence. The manifestation of cardiovascular diseases (CVD) results from the interaction between genetic and environmental factors, such as physical inactivity, inadequate diet, smoking, excessive alcohol consumption, and the use of illicit substances. Among these factors, childhood sedentary behavior stands out as one of the main triggers of epigenetic changes that can directly influence gene expression, contributing to a greater predisposition to developing CVD in adulthood. These alterations affect metabolic, inflammatory, and hormonal pathways, promoting the onset of conditions such as insulin resistance and obesity from childhood. This research is characterized as a qualitative and integrative literature review, aiming to gather, analyze, and synthesize scientific evidence available in the literature on the epigenetic mechanisms associated with sedentary behavior during childhood. Understanding the epigenetic mechanisms involved in this relationship is essential to investigate how early environmental factors negatively impact cardiovascular health throughout life. In this context, the study of epigenetics opens new perspectives in the field of prevention, early diagnosis, prognosis, and the development of more effective personalized therapies tailored to individual needs.
References
Agha, G., Mendelson, M. M., Ward-Caviness, C. K., Joehanes, R., Huan, T., Gondalia, R., ... & Liu, C. (2019). Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation, 140(8), 645–657. https://doi.org/10.1161/CIRCULATIONAHA.118.039357;
Alfaro, J. M., et al. (2025). Identification of new DNA methylation markers associated with childhood obesity. Journal of Clinical Epigenetics, 5(1), 1–13. https://doi.org/10.1016/j.jcepi.2025.100013.
Back, I. C., Barros, N. F., & Caramelli, B. (2022). Estilo de vida, ambientes impróprios na infância e suas repercussões na saúde cardiovascular do adulto. Jornal de Pediatria (Rio J), 98(Suppl. 1), 19–26. https://doi.org/10.1016/j.jped.2022.05.001.
Da Silva, F. C., et al. (2020). Efeitos do exercício físico na expressão de MicroRNAs: uma revisão sistemática. Journal of Strength and Conditioning Research, 34(1), 270–280. https://doi.org/10.1519/JSC.0000000000003103.
De Oliveira, D. W., & De Oliveira, E. S. A. (2020). Sedentarismo infantil, cultura do consumo e sociedade tecnológica: implicações à saúde. Revista Interação Interdisciplinar, 4(1), 155–169. https://doi.org/10.36557/2526-9550.2020v4n1p155-169.
.
Desiderio, A., Pastorino, M., Campitelli, M., & et al. (2024). DNA methylation in cardiovascular disease and heart failure: Novel prediction models? Clinical Epigenetics, 16, 115. https://doi.org/10.1186/s13148-024-01722-x.
Dias, R. I. R., et al. (2024). O papel da genética na predisposição a doenças cardiovasculares. Brazilian Journal of Implantology and Health Sciences, 6(3), 2045–2055. https://doi.org/10.36557/2674-8169.2024v6n3p2045-2055.
Dorn, L. E., Lasman, L., Chen, J., Xu, X., Hund, T. J., Medvedovic, M., Hanna, J. H., Van Berlo, J. H., & Accornero, F. (2015). The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation Research, 114(3), 524–537. https://doi.org/10.1161/CIRCRESAHA.114.302624.
Dlouhá, D., & Hubáček, J. A. (2017). Regulatory RNAs and cardiovascular disease—with a special focus on circulating microRNAs. Physiological Research, 66(Suppl. 1), S21–S38.
Gonçalves de Almeida, L., Moreira da Silva, A. C., de Carvalho Balbuena, F. L., Atique Gabriel, S., & Comelis Bertolin, D. (2025). Programação metabólica: Revisão da literatura. Revista Corpus Hippocraticum, 1(2).
Hyun, K., Jeon, J., Park, K., & Kim, J. (2017). Writing, erasing and reading histone lysine methylations. Experimental & molecular medicine, 49(4), e324-e324. https://doi.org/10.1038/emm.2017.11.
Leite, Michel Lopes, & Costa, Fabricio F.. (2017). Epigenômica, epigenética e câncer. Revista Pan-Amazônica de Saúde, 8(4), 23-25. https://dx.doi.org/10.5123/s2176-62232017000400006.
Luz, C. S. M., Sena, L. S., Fonseca, W. J. L., Sousa, G. G. T., Abreu, B. S., Fonseca, W. L., Rodrigues, W. M. F., Farias, L. A., Santos, K. R., & Sousa Júnior, S. C. (2015). Influências de interações entre gene-ambiente sobre doenças cardiovasculares e nutrição. Nucleus, 12(2), 309–320. https://doi.org/10.3738/1982.2278.1477.
Maia, M. M. D., & Silva, I. I. F. G. (2020). Conceitos básicos de epigenética para universitários (1ª ed.). Editora Universitária da UFRPE.
Mainardes, V. T., Canizella, G. P., Ramos, M. G., & Yamamoto, R. M. (2022). Promoção de saúde cardiovascular na infância e na adolescência: uma revisão da literatura. Revista de Medicina, 101(6), e-199841. https://doi.org/10.11606/issn.1679-9836.v101i6e-1998411.
Mendonça, V. F. (2016). A relação entre o sedentarismo, sobrepeso e obesidade com as doenças cardiovasculares em jovens adultos: uma revisão da literatura. Saúde e Desenvolvimento Humano, 4(1), 79–90. https://doi.org/10.18316/2317-8582.16.21.
Ministério da Saúde (Brasil). (2023). Cerca de 400 mil pessoas morreram em 2022 no Brasil por problemas cardiovasculares. Biblioteca Virtual em Saúde. https://bvsms.saude.gov.br/cerca-de-400-mil-pessoas-morreram-em-2022-no-brasil-por-problemas-cardiovasculares/.
Mongelli, A., Atlante, S., Bachetti, T., Martelli, F., Farsetti, A., & Gaetano, C. (2020). Epigenetic signaling and RNA regulation in cardiovascular diseases. International Journal of Molecular Sciences, 21(2), 509. https://doi.org/10.3390/ijms21020509.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. Santa Maria. Editora da UFSM.
Plaza-Florido, A., et al. (2022). Resposta transcricional e epigenética ao comportamento sedentário e à atividade física em crianças e adolescentes: uma revisão sistemática. Frontiers in Pediatrics, 10, 917152. https://doi.org/10.3389/fped.2022.917152.
Prasher, D., Greenway, S. C., & Singh, R. B. (2020). The impact of epigenetics on cardiovascular disease. Biochemistry and Cell Biology, 98(1), 12–22. https://doi.org/10.1139/bcb-2019-0045.
Rodrigues, F. D. A. A., Avila, E., dos Santos Nascimento, F. H., Carvalho, L. F. C., & van Cleef Banaskiwitz, N. H. (2024). Herança Epigenética e Memória Genética: Mecanismos, Evidências e Implicações. Revista Científica de Salud y Desarrollo Humano, 5(4), 2255-2276. DOI: 10.61368/r.s.d.h.v5i4.460.
Santana, N. A. A., Vilela, M. M., Landim, G. M., Rizzatti, M. E. C., Xavier, A. P. D., Tessari, B. M., Sá, I. P., & Mariano, H. M. D. P. A. (2023). A importância da epigenética no contexto das doenças humanas complexas: revisão sistemática. Revista Foco, 16(11), e3611. https://doi.org/10.54751/revistafoco.v16n11-098.
Silva, G. A., Castro, N. S., & Figueiredo, R. O. (2020). Mecanismos epigenéticos e a ação da expressão da proteína BRCA na carcinogênese mamária. Brazilian Journal of Development, 6(10), 82596-82613. https://doi.org/10.34117/bjdv6n10-623
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research. 104, 333-9. Doi: 10.1016/j.jbusres.2019.07.039.
Światowy, W. J., et al. (2021). Physical activity and DNA methylation in humans. International Journal of Molecular Sciences, 22(23), 12989. https://doi.org/10.3390/ijms222312989.
Wu, L., Zhao, X., Shen, Y., Huang, G., Zhang, M., Yan, Y., et al. (2015). Influence of lifestyle on the FAIM2 promoter methylation between obese and lean children: A cohort study. BMJ Open, 5(e007670). https://doi.org/10.1136/bmjopen-2015-007670.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ana Beatriz Moreira Pedro, Beatriz Camargo, Michele Andressa Vier Wolski

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
