Metabolic evaluation of brain tumors by proton magnetic resonance spectroscopy (¹H-MRS): Comparative analysis between 1.5T and 3T Systems

Authors

DOI:

https://doi.org/10.33448/rsd-v14i11.49875

Keywords:

Proton Magnetic Resonance Spectroscopy, Brain tumors, Metabolites.

Abstract

Introduction: Proton magnetic resonance spectroscopy (¹H-MRS) is a noninvasive tool of great relevance for detecting metabolites in brain tumors, allowing the early identification of biochemical alterations before morphological changes appear in conventional imaging. However, technical factors such as magnetic field strength and differences between equipment manufacturers may affect diagnostic accuracy. Objectives: To analyze the main metabolic findings obtained through ¹H-MRS in brain tumors and to compare the performance of different manufacturers (Siemens, GE, and Philips) operating at 1.5T and 3T magnetic fields, focusing on diagnostic sensitivity. Method: A systematic review was conducted according to PRISMA guidelines. Studies published in the last ten years in MEDLINE/PubMed databases that applied ¹H-MRS for brain tumor assessment were included, focusing on the detection of metabolites such as N-acetyl aspartate (NAA), choline (Cho), creatine (Cr), lactate (Lac), and myo-inositol (Mi). A total of 33 articles met the eligibility criteria. Results: Magnetic field strength had a greater impact on spectral quality than manufacturer differences. 3T systems demonstrated superior spectral resolution, higher signal-to-noise ratio, and greater ability to detect low-concentration metabolites such as Mi and Lac. Metabolic ratios (NAA/Cr and Cho/Cr) were more accurate at 3T. Variations among Siemens, GE, and Philips systems were minimal and clinically insignificant. Conclusion: ¹H-MRS is a valuable technique for metabolic evaluation, aiding in the diagnosis and monitoring of brain tumors. Higher magnetic fields (3T) provide improved sensitivity and specificity, and protocol standardization is essential for multicenter studies.

References

Cai, K., Tain, R. W., Zhou, X. J., Damen, F. C., Scotti, A. M., Hariharan, H., et al. (2017). Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Molecular Imaging and Biology, 19(2), 225–232. https://doi.org/10.1007/s11307-016-1009-1

Chaumeil, M. M., Radoul, M., Najac, C., Eriksson, P., Viswanath, P., Blough, M. D., et al. (2016). Hyperpolarized 13C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. NeuroImage: Clinical, 12, 593–601. https://doi.org/10.1016/j.nicl.2016.08.005

Dou, W., Zhang, M., Zhang, X., Li, Y., Chen, H., Li, S., et al. (2015). Convex-envelope based automated quantitative approach to multi-voxel 1H-MRS applied to brain tumor analysis. PLoS ONE, 10(6), e0126830. https://doi.org/10.1371/journal.pone.0126830

El-Abtah, M. E., Wenke, M. R., Talati, P., Fu, M., Kim, D., Weerasekera, A., et al. (2022). Myo-inositol levels measured with MR spectroscopy can help predict failure of antiangiogenic treatment in recurrent glioblastoma. Radiology, 303(2), 328–336. https://doi.org/10.1148/radiol.212134

Frank, S. M., Becker, M., Malloni, W. M., Sasaki, Y., Greenlee, M. W., & Watanabe, T. (2023). Protocol to conduct functional magnetic resonance spectroscopy in different age groups of human participants. STAR Protocols, 4(3), 102219. https://doi.org/10.1016/j.xpro.2023.102219

Hangel, G., Niess, E., Lazen, P., Bednarik, P., Bogner, W., & Strasser, B. (2022). Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Analytical Biochemistry, 642, 114510. https://doi.org/10.1016/j.ab.2022.114510

Huang, C., Peng, Y., Lin, E., Ni, Z., Lin, X., Zhan, H., et al. (2022). Adaptable singlet-filtered nuclear magnetic resonance spectroscopy for chemical and biological applications. Analytical Chemistry, 94(36), 12328–12335. https://doi.org/10.1021/acs.analchem.2c02460

Ifa, D. R., Wu, C., Ouyang, Z., & Cooks, R. G. (2010). Desorption electrospray ionization and other ambient ionization methods: Current progress and preview. Analyst, 135(4), 669–681. https://doi.org/10.1039/b925268k

Kim, M. M., Parolia, A., Dunphy, M. P., & Venneti, S. (2016). Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nature Reviews Clinical Oncology, 13(12), 725–739. https://doi.org/10.1038/nrclinonc.2016.121

Molloy, A. R., Najac, C., Viswanath, P., Lakhani, A., Subramani, E., Batsios, G., et al. (2020). MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics, 10(17), 7841–7855. https://doi.org/10.7150/thno.46356

Mukherjee, D., Trigo-Mouriño, P., Jiang, Y., Nowak, T., Shchurik, V., Adpressa, D. A., et al. (2022). Rapid antibody conformational screening by matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry. Journal of Separation Science, 45(23), 4434–4443. https://doi.org/10.1002/jssc.202200479

Öz, G., Deelchand, D. K., Wijnen, J. P., Mlynárik, V., Xin, L., Mekle, R., et al. (2020). Advanced single voxel 1H magnetic resonance spectroscopy techniques in humans: Experts’ consensus recommendations. NMR in Biomedicine, 33(1), e4236. https://doi.org/10.1002/nbm.4236

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583

Payne, G. S., Harris, L. M., Cairns, G. S., Messiou, C., de Souza, N. M., Macdonald, A., et al. (2016). Validating a robust double-quantum-filtered 1H MRS lactate measurement method in high-grade brain tumours. NMR in Biomedicine, 29(2), 256–266. https://doi.org/10.1002/nbm.3451

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Pól, J., Strohalm, M., Havlíček, V., & Volný, M. (2010). Molecular mass spectrometry imaging in biomedical and life science research. Histochemistry and Cell Biology, 134(5), 423–443. https://doi.org/10.1007/s00418-010-0720-2

Rabi, I. I., Zacharias, J. R., Millman, S., & Kusch, P. (1938). A new method of measuring nuclear magnetic moment. Physical Review, 53(4), 318–327. https://doi.org/10.1103/PhysRev.53.318

Ranjith, G., Parvathy, R., Vikas, V., Chandrasekharan, K., & Nair, S. (2015). Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Neuroradiology Journal, 28(2), 106–113. https://doi.org/10.1177/1971400915584979

Saatchian, E., Ehsani, S., & Montazerabadi, A. (2023). Evaluation of two post-processing analysis methods of proton magnetic resonance spectroscopy in glioma tumors. Journal of Biomedical Physics and Engineering, 13(2), 123–132. https://doi.org/10.31661/jbpe.v0i0.2655

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/J.JBUSRES.2019.07.039.

Steidl, E., Pilatus, U., Hattingen, E., Steinbach, J. P., Zanella, F., Ronellenfitsch, M. W., et al. (2016). Myoinositol as a biomarker in recurrent glioblastoma treated with bevacizumab: A 1H-magnetic resonance spectroscopy study. PLoS ONE, 11(2), e0151390. https://doi.org/10.1371/journal.pone.0151390

Viard, A., Eustache, F., & Segobin, S. (2021). History of magnetic resonance imaging: A trip down memory lane. Neuroscience, 474, 71–79. https://doi.org/10.1016/j.neuroscience.2021.07.009

Published

2025-11-13

Issue

Section

Review Article

How to Cite

Metabolic evaluation of brain tumors by proton magnetic resonance spectroscopy (¹H-MRS): Comparative analysis between 1.5T and 3T Systems. Research, Society and Development, [S. l.], v. 14, n. 11, p. e93141149875, 2025. DOI: 10.33448/rsd-v14i11.49875. Disponível em: https://www.rsdjournal.org/rsd/article/view/49875. Acesso em: 5 dec. 2025.