The influence of meteorological variables on the incidence of arbovirus cases in the Municipality of Belém, State of Pará (PA), Brazil
DOI:
https://doi.org/10.33448/rsd-v14i11.50012Keywords:
Aedes aegypti, Dengue, Chikungunya, Zika virus, Climate effects.Abstract
Arboviruses such as dengue, chikungunya, and zika represent an important threat to public health, whose expansion of Aedes aegypti breeding sites is related to meteorological variables, favoring their transmission. Thus, this study aimed to analyze the influence of meteorological variables on the incidence of dengue, chikungunya, and zika in the municipality of Belém (PA), from 2020 to 2024. Secondary data were obtained from the Information System for Notifiable Diseases (SINAN) and the National Institute of Meteorology (INMET). Statistical analyses using simple linear regression assessed associations between meteorological variables and arbovirus incidence, with a 5% significance level (p<0,05). During the period, 7,560 probable cases were reported, with dengue accounting for 67.31%, chikungunya for 29.75%, and zika for 2.94%. Precipitation and relative humidity showed significant association with dengue and chikungunya in several years, while temperature presented a more variable correlation. For zika, the association was limited, possibly due to underreporting. The results demonstrate a correlation between climatic factors and arbovirus incidence in Belém, indicating that periods with higher rainfall and humidity favor Aedes aegypti proliferation and increased viral transmission. Continuous and integrated vector control is reinforced to reduce the impact of these diseases on public health.
References
Alto, B. W., & Juliano, S. A. (2001). Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): Implications for range expansion. Journal of Medical Entomology, 38(4), 646–656. https://doi.org/10.1603/0022-2585-38.5.646
Araújo, R. A. F., Uchôa, N. M., & Alves, J. M. B. (2019). Influência de variáveis meteorológicas na prevalência das doenças transmitidas pelo mosquito Aedes aegypti. Revista Brasileira de Meteorologia, 34(3), 439–447. https://doi.org/10.1590/0102-7786343054
Barrera, R., Acevedo, V., Amador, M., Marzan, M., Adams, L. E., & Paz-Bailey, G. (2023). El Niño Southern Oscillation (ENSO) effects on local weather, arboviral diseases, and dynamics of managed and unmanaged populations of Aedes aegypti (Diptera: Culicidae) in Puerto Rico. Journal of Medical Entomology, 60(4), 796–807. https://doi.org/10.1093/jme/tjad053
Bekman, O. R., & Costa Neto, P. L. O. (2009). Análise estatística da decisão. Edgard Blucher.
Brasil. Ministério da Saúde. (2025). Dengue. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dengue
Caminade, C., Turner, J., Metelmann, S., Hesson, J. C., Blagrove, M. S. C., Solomon, T., ... Baylis, M. (2017). Global risk model for vector-borne transmission of Zika virus. Proceedings of the National Academy of Sciences, 114(1), 119–124. https://doi.org/10.1073/pnas.1614303114
Cardenas, V. M., Paternina-Caicedo, A. J., & Salvatierra, E. B. (2019). Underreporting of fatal congenital Zika syndrome, Mexico, 2016–2017. Emerging Infectious Diseases, 25(8), 1560–1562. https://doi.org/10.3201/eid2508.190106
Carlson, C. J., Dougherty, E. R., & Getz, W. (2016). An ecological assessment of the pandemic threat of Zika virus. PLoS Neglected Tropical Diseases, 10(8), e0004968. https://doi.org/10.1371/journal.pntd.0004968
Carrillo, F. A. B., Ojeda, S., Sanchez, N., Plazaola, M., Collado, D., Miranda, T., ... Harris, E. (2025). A comparative analysis of dengue, chikungunya, and Zika in a pediatric cohort over 18 years. medRxiv [Preprint], 3, 1–29. https://doi.org/10.1101/2025.01.06.25320089
Chein, F. (2019). Introdução aos modelos de regressão linear. Enap. https://repositorio.enap.gov.br/jspui/bitstream/1/4788/1/Livro_Regress% C3%A3o%20Linear.pdf
Costa, E. A. P. A., Santos, E. M. M., Correia, J. C., & Albuquerque, C. M. R. (2010). Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia, 54(3), 488–493. https://doi.org/10.1590/S0085-56262010000300021
De Souza, W. M., De Lima, S. T. S., Simões Mello, L. M., Candido, D. S., Buss, L., Whittaker, C., ... Weaver, S. C. (2023). Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: An epidemiological study. The Lancet Microbe, 4(3), e212–e223. https://doi.org/10.1016/S2666-5247(23)00033-2
Donateli, C. P. & Campos, F. C. (2023). Visualization of surveillance data on urban arboviroses transmitted by Aedes Aegypti in the State of Minas Gerais, Brazil. Journal of Information Systems and Technology Management – Jistem USP, 20, e202320003. https://doi.org/10.4301/S1807-1775202320003
Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J. M., Veiga, A. B. G. D., Spilki, F. R., ... Chies, J. A. B. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais da Academia Brasileira de Ciências, 92(1), e20191375. https://doi.org/10.1590/0001-3765202020191375
Fernandes, C. O. S., Fernandes, D. R. A. S., Baracat, R. V. M., Silveira, P. T. M., & Braga, G. O. (2024). Emerging and reemerging arboviruses in Brazil: Dengue, chikungunya, and Zika. Brazilian Journal of Implantology and Health Sciences, 6(8), 5036–5048. https://doi.org/10.36557/2674-8169.2024v6n8p5036-5048
Gomes, B. S., Querino, C. A. S., Querino, J. K. A. S., Rohleder, L. A. S., Moura, M. A. L., & Alves, L. S. (2025). Correlação entre os casos de dengue e as variáveis meteorológicas em Humaitá/AM. Caminhos de Geografia, 26(107), 113–128. https://doi.org/10.14393/RCG2610777579
Gurgel-Gonçalves, R., Oliveira, W. K., & Croda, J. (2024). The greatest dengue epidemic in Brazil: Surveillance, prevention, and control. Revista da Sociedade Brasileira de Medicina Tropical, 57, e20230458. https://doi.org/10.1590/0037-8682-0113-2024
Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E., & Halstead, S. B. (2016). Dengue infection. Nature Reviews Disease Primers, 2, 16055. https://doi.org/ 10.1038/nrdp.2016.55
Hou, W., Cruz-Cosme, R., Armstrong, N., Obwolo, L. A., Wen, F., Hu, W., ... Tang, Q. (2017). Molecular cloning and characterization of the genes encoding the Zika virus proteins. Gene, 628, 117–128. https://doi.org/10.1016/j.gene.2017.07.049
Huang, Y. J., Higgs, S., Horne, K. M., & Vanlandingham, D. L. (2014). Flavivirus-mosquito interactions. Viruses, 6(11), 4703–4730. https://doi.org/ 10.3390/v6114703
Instituto Brasileiro de Geografia e Estatística (IBGE). (2022). Cidades e Estados. https://www.ibge.gov.br/cidades-e-estados/pa/belem.html
Instituto Nacional de Meteorologia (INMET). (2022). Boletim agroclimatológico mensal, 7(6). https://portal.inmet.gov.br/noticias/boletim-agroclimatol%C3%B3gico-mensal-junho-2022
Kuno, G., & Chang, G. J. J. (2007). Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Archives of Virology, 152(4), 687–696. https://doi.org/10.1007/s00705-006-0903-z
Machado, N. G., Neto, N. L., Lotufo, J. B. S., Santos, L. O. F., & Biudes, M. S. (2023). Spatiotemporal dengue fever incidence associated with climate in a Brazilian tropical region. Geographies, 3(4), 673–686. https://doi.org/10.3390/geographies3040035
Marcondes, C. B., Contigiani, M., & Gleiser, R. M. (2017). Emergent and reemergent arboviruses in South America and the Caribbean: Why so many and why now? Journal of Medical Entomology, 54(3), 509–532. https://doi.org/10.1093/jme/tjw209
Meason, B., & Paterson, R. (2014). Chikungunya, climate change, and human rights. Health and Human Rights Journal, 16(1), 105–112.
Medeiros, D. B. A., & Vasconcelos, P. F. C. (2019). Is the Brazilian diverse environment a crib for the emergence and maintenance of exotic arboviruses?. Anais da Academia Brasileira de Ciências, 91(3), e20190175. https://doi.org/10.1590/0001-3765201920190407
Melo, D. C. T. V., Santos, E. M. M., Xavier, M. N., Nascimento, J. D., Barbosa, V. A., Oliveira, A. L. S., ... Oliveira, C. M. F. (2024). Integrated strategies for Aedes aegypti control applied to individual houses: An approach to mitigate vectorial arbovirus transmission. Tropical Medicine and Infectious Disease, 9(2), 53. https://doi.org/10.3390/tropicalmed9030053
Naji, H. S. (2023). Dengue fever and global warming: An epidemiological analysis. European Journal of Medical and Health Sciences, 5(5), 60–64. https://doi.org/10.24018/ejmed.2023.5.5.1909
Nunes, M. R. T., Barbosa, T. F. S., Casseb, L. M. N., Neto, J. P. N., Segura, N. O., Monteiro, H. A. O., ... Vasconcelos, P. F. C. (2009). Eco-epidemiologia dos arbovírus na área de influência da rodovia Cuiabá-Santarém (BR-163), Estado do Pará, Brasil. Cadernos de Saúde Pública, 25(12), 2583–2602. https://doi.org/10.1590/S0102-311X2009001200006
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free ebook]. Editora da UFSM.
Perera, R., & Kuhn, R. J. (2008). Structural proteomics of dengue virus. Current Opinion in Microbiology, 11(4), 369–377. https://doi.org/ 10.1016/j.mib.2008.06.004
Robert, M. A. (2019). Temperature impacts on dengue emergence in the United States. International Journal of Hygiene and Environmental Health, 222(8), 1184–1191. https://doi.org/10.1016/j.epidem.2019.05.003
Rosa, Y. B. M., Moschen, H. T. S., Loss, A. C., Silva, T. C. C., Santos, A. P. B., Pimenta, B. C., ... Vicente, C. R. (2024). Climate change impacts on dengue transmission areas in Espírito Santo state, Brazil. Oxford Open Immunology, 5(1), iqae011. https://doi.org/10.1093/oxfimm/iqae011
Sarwar, M., & Rasool, B. (2022). Seasonal prevalence and phenomenal biology as tools for dengue mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae) management. Brazilian Archives of Biology and Technology, 65, e22220050. https://doi.org/10.1590/1678-4324-2022220050
Schwartz, O., & Albert, M. L. (2010). Biology and pathogenesis of chikungunya virus. Nature Reviews Microbiology, 8(7), 491–500. https://doi.org/10.1038/nrmicro2368
Semenza, J. C., Rocklöv, J., & Ebi, K. L. (2022). Climate change and cascading risks of infectious diseases. Infectious Diseases and Therapy, 11(4), 1371–1390. https://doi.org/10.1007/s40121-022-00647-3
Shitsuka, R. et al. (2014). Matemática fundamental para a tecnologia. (2ed). Editora Érica.
Silva, N. M., Teixeira, R. A. G., Cardoso, C. G., Junior, J. B. S., Coelho, G. E., & Oliveira, E. S. F. (2018). Vigilância de chikungunya no Brasil: Desafios no contexto da saúde pública. Epidemiologia e Serviços de Saúde, 27(3), e20180051. https://doi.org/10.5123/S1679-49742018000300003
Siqueira, I. S., Queiroz, J. C. B., Amin, M. M., & Câmara, R. K. C. (2018). A relação da incidência de casos de dengue com a precipitação na área urbana de Belém-PA, 2007 a 2011, através de modelos multivariados de séries temporais. Revista Brasileira de Meteorologia, 33(2), 380–389. https://doi.org/10.1590/0102-7786332010
Sun, S., Xiang, Y., Akahata, W., Holdaway, H., Pal, P., Zhang, X., ... Rossmann, M. G. (2013). Structural analyses at pseudo atomic resolution of chikungunya virus and antibodies show mechanisms of neutralization. eLife, 2, e00435. https://doi.org/10.7554/eLife.00435
Tesla, B., Demakovsky, L. R., Mordecai, E. A., Ryan, S. J., Bonds, M. H., Ngonghala, C. N., ... Murdock, C. C. (2018). Temperature drives Zika virus transmission: Evidence from empirical and mathematical models. Proceedings of the Royal Society B: Biological Sciences, 285(1884), 20180795. https://doi.org/ 10.1098/rspb.2018.0795
Tjaden, N. B., Suk, J. E., Fischer, D., Thomas, S. M., Beierkuhnlein, C., & Semenza, J. C. (2017). Modelling the effects of global climate change on chikungunya transmission in the 21st century. Scientific Reports, 7(3813). https://doi.org/10.1038/s41598-017-03566-3
Vargas, A., Saad, E., Dimech, G. S., Santos, R. H., Sivini, M. A. V. C., Albuquerque, L. C., ... Percio, J. (2016). Características dos primeiros casos de microcefalia possivelmente relacionados ao vírus Zika notificados na Região Metropolitana de Recife, Pernambuco. Epidemiologia e Serviços de Saúde, 25(4), 691–700. https://doi.org/10.5123/S1679-49742016000400003
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Thayara França Pereira, Maria Eduarda da Conceição Gomes, Juliana Beatriz de Azevedo Furtado, Arnaldo Jorge Martins Filho

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
