Mappoint the scientific landscape of ESKAPE pathogens: Authors, trends, and collaboration networks

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50481

Keywords:

ESKAPE Pathogens, Biofilms, Antimicrobial resistance, Phage therapy.

Abstract

Antimicrobial Resistance (AMR), particularly in ESKAPE pathogens, is a critical global public health threat. These multidrug-resistant pathogens form biofilms, creating an urgent gap with pharmaceutical innovation. Objective: This bibliometric analysis aims to map the conceptual structure and the emerging trends within this scientific field. Methodology: A descriptive, retrospective bibliometric analysis (2015-2025) was conducted on scientific output indexed in the Scopus database. Performance metrics (Lotka's and Bradford's Laws) and scientific mapping were applied. Data processing in R with Bibliometrix was used to analyze keyword co-occurrence networks, international collaboration, and thematic classification. Results: Scientific production shows sustained growth, concentrated in core journals. There is marked geographical inequality, with the highest output from high-income countries. The co-occurrence network confirms solid thematic clusters centered on AMR mechanisms, biofilm formation, and virulence. Discussion: Findings confirm thematic concentration on microbiological fundamentals and the shift toward alternative therapies such as phage therapy and drug repurposing. The centralization of output in high-impact nodes reveals a significant gap in knowledge circulation. Conclusion: The study confirms AMR as a global priority and an expanding field. Transnational collaboration is critical for progress. The main implication is the need to strengthen multicentric research in vulnerable contexts to achieve a comprehensive understanding and ensure the global applicability of therapeutic strategies against ESKAPE.

References

Ayobami, O. et al. (2022). Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect. 11(1), 2030‑46. doi:10.1080/22221751.2022.2030196.

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 11(4), 959‑75. doi:10.1016/j.joi.2017.08.007.

Ablakimova, N. et al. (2023). Bibliometric analysis of global research output on antimicrobial resistance among pneumonia pathogens (2013–2023). Antibiotics. 12(9):1411. doi:10.3390/antibiotics12091411.

Bazira, J., Nalumaga, P., Quraishi, B. et al. (2025). Trends of antibiotic resistance in ESKAPE pathogens in Uganda. Can J Infect Dis Med Microbiol. 2025, 7034931. https://pubmed.ncbi.nlm.nih.gov/40401214.

Bradford, S. C. (1985). Sources of information on specific subjects. Engineering. 137:85‑6. https://doi.org/10.1177/016555158501000406. https://www.scirp.org/reference/referencespapers?referenceid=3027930.

Chávez-Jacobo, V. M. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP. Revista especializada en ciencias químico-biológicas. 23, e20200202. https://doi.org/10.22201/fesz.23958723e.2020.0.202

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. (2021). How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 133, 285‑96. doi:10.1016/j.jbusres.2021.04.070.

Elsevier. Scopus [Internet]. Amsterdam: Elsevier; c2024. https://www.scopus.com

El-Ruz, R. A. et al. (2025). The epidemiology of antimicrobial resistant bacterial infection in Qatar: a systematic review and meta-analysis. J Infect Public Health. 18(12), 102732. doi:10.1016/j.jiph.2025.102732.

Ferreira, A. L. G. & Vidigal, I. (2025). Mapeando a Ciência com a Bibliometria. Editor Eduardo F. Santos. ISBN-13: ‎978-6501479675.

Guo, S., Li, L., Zhang, Q. et al. (2025). Drug repurposing against drug-resistant ESKAPE pathogens. Front Microbiol. 2025;16:1669585. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2025.1669585/pdf

Gürbüz, M. & Gencer, G. (2024). Global trends and future directions on carbapenem-resistant Enterobacteriaceae (CRE) research: a comprehensive bibliometric analysis (2020–2024). Medicine (Baltimore). 103(49), e40783. doi:10.1097/MD.0000000000040783.

Lai, C. C., Chen, S. Y., Ko, W. C. & Hsueh, P. R. (2021). Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 57(4), 106324. doi:10.1016/j.ijantimicag.2021.106324.

Lotka, A. J. (1926). The frequency distribution of scientific productivity. J Wash Acad Sci. 16(12), 317‑23. https://www.jstor.org/stable/24529203

Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10(10), 1310. doi:10.3390/pathogens10101310.

Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. (2021). The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 19(5), 287‑302. doi:10.1038/s41579-020-00506-3.

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A. et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399(10325):629‑55. doi:10.1016/S0140-6736(21)02724-0.

Marino, A. et al. (2025)Phage to ESKAPE: personalizing therapy for MDR infections – a comprehensive clinical review. Pathogens. 14(10):1011. doi:10.3390/pathogens14101011

Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A. et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 33(3), e00181‑19. doi:10.1128/CMR.00181-19.

Orhan, Z. et al. (2024). Antibiotic resistance trends in ESKAPE pathogens isolated at a health practice and research hospital: a five-year retrospective study. J Infect Dev Ctries. 19(5):592‑600. doi:10.3855/jidc.19592.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [Free ebook]. Santa Maria. Editora da UFSM.

Seid, M. et al. (2025). Antimicrobial resistance patterns of WHO priority pathogens at general hospital in Southern Ethiopia during the COVID-19 pandemic, with particular reference to ESKAPE-group isolates of surgical site infections. BMC Microbiol. 25:3783. doi:10.1186/s12866-025-03783-1.

Saini, P. et al. (2024). Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol. 15:1428808. doi:10.3389/fmicb.2024.1428808.

Singh, A., Tanwar, M., Singh, T. P., Sharma, S. & Sharma, P. (2024). An escape from ESKAPE pathogens: a comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol. 279(Pt.3):135253. doi:10.1016/j.ijbiomac.2024.135253.

Sorenson, T. R., Zack, K. M. & Joshi, S. G. (2025). Biofilm formation and the role of efflux pumps in ESKAPE pathogens. Microorganisms. 13(8):1816. doi:10.3390/microorganisms13081816.

Stoian, I. A. et al. (2024). Exploring the ESKAPE maze: pneumonias, resistance and perspectives. Pneumologia. 72:140‑7. https://reference-global.com/article/10.2478/pneum-2024-0020.

Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. (2020). The global preclinical antibacterial pipeline. Nat Rev Microbiol. 18(5):275‑85. doi:10.1038/s41579-019-0288-0

Zhen, X., Lundborg, C. S., Sun, X., Hu, X. & Dong, H. (2019). Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 8:137. doi:10.1186/s13756-019-0590-7.

Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge (MA): Addison‑Wesley. https://archive.org/details/in.ernet.dli.2015.90211/page/n33/mode/2up.

Downloads

Published

2025-12-31

Issue

Section

Health Sciences

How to Cite

Mappoint the scientific landscape of ESKAPE pathogens: Authors, trends, and collaboration networks. Research, Society and Development, [S. l.], v. 14, n. 12, p. e192141250481, 2025. DOI: 10.33448/rsd-v14i12.50481. Disponível em: https://www.rsdjournal.org/rsd/article/view/50481. Acesso em: 2 jan. 2026.