Mappoint the scientific landscape of ESKAPE pathogens: Authors, trends, and collaboration networks
DOI:
https://doi.org/10.33448/rsd-v14i12.50481Keywords:
ESKAPE Pathogens, Biofilms, Antimicrobial resistance, Phage therapy.Abstract
Antimicrobial Resistance (AMR), particularly in ESKAPE pathogens, is a critical global public health threat. These multidrug-resistant pathogens form biofilms, creating an urgent gap with pharmaceutical innovation. Objective: This bibliometric analysis aims to map the conceptual structure and the emerging trends within this scientific field. Methodology: A descriptive, retrospective bibliometric analysis (2015-2025) was conducted on scientific output indexed in the Scopus database. Performance metrics (Lotka's and Bradford's Laws) and scientific mapping were applied. Data processing in R with Bibliometrix was used to analyze keyword co-occurrence networks, international collaboration, and thematic classification. Results: Scientific production shows sustained growth, concentrated in core journals. There is marked geographical inequality, with the highest output from high-income countries. The co-occurrence network confirms solid thematic clusters centered on AMR mechanisms, biofilm formation, and virulence. Discussion: Findings confirm thematic concentration on microbiological fundamentals and the shift toward alternative therapies such as phage therapy and drug repurposing. The centralization of output in high-impact nodes reveals a significant gap in knowledge circulation. Conclusion: The study confirms AMR as a global priority and an expanding field. Transnational collaboration is critical for progress. The main implication is the need to strengthen multicentric research in vulnerable contexts to achieve a comprehensive understanding and ensure the global applicability of therapeutic strategies against ESKAPE.
References
Ayobami, O. et al. (2022). Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerg Microbes Infect. 11(1), 2030‑46. doi:10.1080/22221751.2022.2030196.
Aria, M. & Cuccurullo, C. (2017). Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr. 11(4), 959‑75. doi:10.1016/j.joi.2017.08.007.
Ablakimova, N. et al. (2023). Bibliometric analysis of global research output on antimicrobial resistance among pneumonia pathogens (2013–2023). Antibiotics. 12(9):1411. doi:10.3390/antibiotics12091411.
Bazira, J., Nalumaga, P., Quraishi, B. et al. (2025). Trends of antibiotic resistance in ESKAPE pathogens in Uganda. Can J Infect Dis Med Microbiol. 2025, 7034931. https://pubmed.ncbi.nlm.nih.gov/40401214.
Bradford, S. C. (1985). Sources of information on specific subjects. Engineering. 137:85‑6. https://doi.org/10.1177/016555158501000406. https://www.scirp.org/reference/referencespapers?referenceid=3027930.
Chávez-Jacobo, V. M. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP. Revista especializada en ciencias químico-biológicas. 23, e20200202. https://doi.org/10.22201/fesz.23958723e.2020.0.202
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. & Lim, W. M. (2021). How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 133, 285‑96. doi:10.1016/j.jbusres.2021.04.070.
Elsevier. Scopus [Internet]. Amsterdam: Elsevier; c2024. https://www.scopus.com
El-Ruz, R. A. et al. (2025). The epidemiology of antimicrobial resistant bacterial infection in Qatar: a systematic review and meta-analysis. J Infect Public Health. 18(12), 102732. doi:10.1016/j.jiph.2025.102732.
Ferreira, A. L. G. & Vidigal, I. (2025). Mapeando a Ciência com a Bibliometria. Editor Eduardo F. Santos. ISBN-13: 978-6501479675.
Guo, S., Li, L., Zhang, Q. et al. (2025). Drug repurposing against drug-resistant ESKAPE pathogens. Front Microbiol. 2025;16:1669585. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2025.1669585/pdf
Gürbüz, M. & Gencer, G. (2024). Global trends and future directions on carbapenem-resistant Enterobacteriaceae (CRE) research: a comprehensive bibliometric analysis (2020–2024). Medicine (Baltimore). 103(49), e40783. doi:10.1097/MD.0000000000040783.
Lai, C. C., Chen, S. Y., Ko, W. C. & Hsueh, P. R. (2021). Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 57(4), 106324. doi:10.1016/j.ijantimicag.2021.106324.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. J Wash Acad Sci. 16(12), 317‑23. https://www.jstor.org/stable/24529203
Mancuso, G., Midiri, A., Gerace, E. & Biondo, C. (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 10(10), 1310. doi:10.3390/pathogens10101310.
Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. (2021). The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 19(5), 287‑302. doi:10.1038/s41579-020-00506-3.
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A. et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399(10325):629‑55. doi:10.1016/S0140-6736(21)02724-0.
Marino, A. et al. (2025)Phage to ESKAPE: personalizing therapy for MDR infections – a comprehensive clinical review. Pathogens. 14(10):1011. doi:10.3390/pathogens14101011
Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A. et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 33(3), e00181‑19. doi:10.1128/CMR.00181-19.
Orhan, Z. et al. (2024). Antibiotic resistance trends in ESKAPE pathogens isolated at a health practice and research hospital: a five-year retrospective study. J Infect Dev Ctries. 19(5):592‑600. doi:10.3855/jidc.19592.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [Free ebook]. Santa Maria. Editora da UFSM.
Seid, M. et al. (2025). Antimicrobial resistance patterns of WHO priority pathogens at general hospital in Southern Ethiopia during the COVID-19 pandemic, with particular reference to ESKAPE-group isolates of surgical site infections. BMC Microbiol. 25:3783. doi:10.1186/s12866-025-03783-1.
Saini, P. et al. (2024). Restriction of growth and biofilm formation of ESKAPE pathogens by caprine gut-derived probiotic bacteria. Front Microbiol. 15:1428808. doi:10.3389/fmicb.2024.1428808.
Singh, A., Tanwar, M., Singh, T. P., Sharma, S. & Sharma, P. (2024). An escape from ESKAPE pathogens: a comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol. 279(Pt.3):135253. doi:10.1016/j.ijbiomac.2024.135253.
Sorenson, T. R., Zack, K. M. & Joshi, S. G. (2025). Biofilm formation and the role of efflux pumps in ESKAPE pathogens. Microorganisms. 13(8):1816. doi:10.3390/microorganisms13081816.
Stoian, I. A. et al. (2024). Exploring the ESKAPE maze: pneumonias, resistance and perspectives. Pneumologia. 72:140‑7. https://reference-global.com/article/10.2478/pneum-2024-0020.
Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. (2020). The global preclinical antibacterial pipeline. Nat Rev Microbiol. 18(5):275‑85. doi:10.1038/s41579-019-0288-0
Zhen, X., Lundborg, C. S., Sun, X., Hu, X. & Dong, H. (2019). Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 8:137. doi:10.1186/s13756-019-0590-7.
Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge (MA): Addison‑Wesley. https://archive.org/details/in.ernet.dli.2015.90211/page/n33/mode/2up.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cristhian Camilo Velandia-Mosquera, Angela María Acosta Castro, Mariana Aguirre Ospina, Andrés Felipe Gómez Sánchez, Juan Camilo Castaño Ospina, Jose Miguel Fierro Santamaría, Diego Fernando Lopez Muñoz

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
