Un enfoque al uso de microbiología predictiva para la formación de biofilms

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i8.5117

Palabras clave:

Análisis bibliométrico, Células planctónicas, Células sésiles, Control de calidad, Predicción microbiana.

Resumen

Es necesario garantizar la calidad e inocuidad de los alimentos durante todas las etapas de la producción de alimentos. El principal desafío en el sector alimentario es el control de la multiplicación microbiana, ya que los microorganismos buscan alternativas, que implican su desarrollo tanto en forma libre como en biofilms, para sobrevivir a los ataques ambientales. Debido a esta preocupación, los investigadores utilizan nuevas estrategias para comprender la dinámica del crecimiento microbiano. En este contexto, la microbiología predictiva está ganando espacio en la microbiología de los alimentos. El objetivo del estudio fue verificar si los modelos predictivos actuales son adecuados para predecir el crecimiento de células sésiles, así como se usan para planctónicas. Se realizo una búsqueda bibliográfica sobre la aplicación de la microbiología predictiva en la evaluación del control de seguridad alimentaria. Con base en la investigación realizada, se concluyó que, debido a la escasez de estudios, no fue posible afirmar la idoneidad de los modelos terciarios en el control de las biopelículas durante la producción de alimentos. Destacamos la necesidad de estudios que puedan modelar la formación de biopelículas de patógenos bajo diferentes factores ambientales.

Referencias

Akkermans, S., &Impe, J. F. V. (2018). Mechanistic modelling of the inhibitory effect of pH on microbial growth. Food Microbiology, 72, 214-219.

Akkermans, S., Jaskula-Goiris, B., Logist, F., &Impe, J. F. V. (2018). Including experimental uncertainty on the independent variables when modelling microbial dynamics: The combined effect of pH and acetic acid on the growth rate of E. coli K12. Journal of Microbiological Methods, 149, 20-28.

Baka, M., Verheyen, D., Cornette, N., Vercruyssen, S., & IMPE, J. F. V. (2017). SalmonellaTyphimurium and Staphylococcus aureus dynamics in/on variable (micro)structures of fish-based model systems at suboptimal temperatures. International Journal of Food Microbiology, 240, 32-39.

Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive microbiology. International Journal of Food Microbiology, 26, 199-218.

Boatemaa, S., Barney, M., Drimie, S., Harper, J., Korsten, L., & Pereira, L. (2019). Awakening from the listeriosis crisis: Food safety challenges, practices and governance in the food retail sector in South Africa. Food Control, 104, 333-342.

Bräutigam, K. R., Jörissen, J., &Priefer, C. (2014). The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Management &Research, 32(8), 683-694.

Ciccio, P. D., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., &Lanieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930-936.

Diallo, M. A., &Bogaerts, P. (2016). Dynamic microorganism growth modelling for shelf life prediction: application to cooked and brined shrimps. IFAC-PapersOnLine, 49-7, 230-235.

Dimakopoulou-Papazoglou, D., Lianou, A., &Koutsoumanis, K. P. (2016). Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiology, 53, 76-81.

Ferrer, J., Prats, C., López, D., & REGO, J. V. (2009). Mathematical modelling methodologies in predictive food microbiology: A SWOT analysis. InternationalJournalofFoodMicrobiology, 134, 2-8.

Forsythe, S. J. (2013). Microbiologia da segurança dos alimentos. (2ª ed.). Porto Alegre: Artmed.

Fukuda, K. (2015). Food safety in a globalized world. Bulletin of the World Health Organization, 93, 212.

Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., &Nychas, G. J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97, 298-309.

González, S. C., Possas, A., Carrasco, E., Valero, A., Bolívar, A., Posada-Izquierdo, G. D., García-Gimeno, R. M., Zurera, G., & Pérez-Rodríguez, F. (2019). ‘MicroHibro’: A software tool for predictive microbiology and microbial risk assessment in foods. International Journal of Food Microbiology, 290, 226-236.

Guillier, L. (2016). Predictive microbiology models and operational readiness. Procedia Food Science, 7, 133-136.

Gutiérrez, D., Rodríguez-Rubio, L., Martínez, B., Rodríguez, A., & García, P. (2016). Bacteriophages as weapons against bacterial biofilms in the food industry. Frontiers in Microbiology, 7.

Gunvig, A., Andresen, M. S., Jacobsen, T., &Borggaard, C. (2018). Staphtox predictor - A dynamic mathematical model to predict formation of Staphylococcus enterotoxin during heating and fermentation of meat products. International Journal of Food Microbiology, 285, 81-91.

Huang, L. (2014). IPMP 2013 – A comprehensive data analysis tool for predictive microbiology. International Journal of Food Microbiology, 171, 100-107.

Latorre, A. A., Van Kessel, J. S., Karns, J. S., Zurakowsk, M. J., Pradhan, A. K., Boor, K. J., Jayarao, B. M., Houser, B. A., Daugherty, C. S. &Schukken, Y. H. (2010). Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science, 93(6), 2792-2802.

Lee, Y. J., Jung, B. S., Kim, K. T., & Paik, H. D. (2015). Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modelling Program (IPMP) 2013. Meat Science, 107, 20-25.

Marino, M., Maifreni, M., Baggio, A., &Innocente, N. (2018). Inactivation of foodborne bacteria biofilms by aqueous and gaseous ozone. Frontiers in Microbiology, 9, 1-12.

Mcmeekin, T. A., Bowman, J., Mcquestin, O., Mellefont, L., Ross, T., &Tamplin, M. (2008). The future of predictive microbiology: strategic research, innovative applications and great expectations. International Journal of Food Microbiology, 128, 2-9.

Messens, W., Hempen, M., &Koutsoumanis, K. (2018). Use of predictive modelling in recent work of the panel on biological hazards of the European Food Safety Authority. Microbial Risk Analysis, 10, 37-43.

Mogha, K. V., Shah, N. P., Prajapati, J. B., &Chaudhari, A. R. (2014). Biofilm - A threat to dairy industry. Indian J. Dairy Sci., 67(6), 459-466.

Moraes, J. O., Cruz, E. A., Souza, E. G. F., Oliveira, T. C. M., Alvarenga, V. O., Peña, W. E. L., Sant’Ana, A. S., &Magnani, M. (2018). Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. International Journal of Food Microbiology, 281, 90-100.

Plaza-Rodriguez, C., Haberbeck, L. U., Desvignes, V., Dalgaard, P., Sanaa, M., Nauta, M., Filter, M., &Guillier, L. (2018). Towards transparent and consistent exchange of knowledge for improved microbiological food safety. Current Opinion in Food Science, 19, 129-137.

Tango, C. N., Akkermans, S., Hussain, M. S., Khan, I., Impe, J. V., Jin, Y. G., & Oh, D. H. (2018). Modelling the effect of pH, water activity, and ethanol concentration on biofilm formation of Staphylococcus aureus. Food Microbiology, 76, 287-295.

Tenenhaus-Aziza, F., &Ellouze, M. (2015). Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair. Food Microbiology, 45, 290-299.

Xu, Z., Xie, J., Soteyome, T., Peters, B. M., Shirtlif, M. E., Liu, J., &Harro, J. M. (2019). Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion in Food Science, 26, 57-64.

Zhang, Y., Li, G., Wu, D., Li, X., Yu, Y., Luo, P., Chen, J., Dai, C., & Wu, Y. (2019). Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends in AnalyticalChemistry, 121, 115669.

Descargas

Publicado

2020-06-25

Número

Sección

Revisiones

Cómo citar

Un enfoque al uso de microbiología predictiva para la formación de biofilms. Research, Society and Development, [S. l.], v. 9, n. 8, p. e90985117, 2020. DOI: 10.33448/rsd-v9i8.5117. Disponível em: https://www.rsdjournal.org/rsd/article/view/5117. Acesso em: 14 dec. 2025.