Propiedades fisicoquímicas y nutricionales de la pulpa de jussara en polvo (Euterpe edulis M.) por secado por atomización

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11256

Palabras clave:

Euterpe edulis Martius, Concentrado de proteína de suero, Almidón modificado, Aislado de proteína de soja.

Resumen

La palma jussara (Euterpe edulis) es bien conocida por su gran presencia en varios estados brasileños y produce un palmito comestible y frutos esféricos conocidos popularmente como jussara. Debido a su alto contenido de antocianinas, estas frutas contienen solo una semilla de color marrón claro que está cubierta por una piel fina y de color púrpura oscuro. Este estudio se llevó a cabo para evaluar los efectos de diferentes mezclas de agentes portadores (CA) (almidón modificado-MS más concentrado de proteína de suero-WPC o aislado de proteína de soja-SPI) sobre las características de las microcápsulas que contienen polvo de pulpa de jussara secada por aspersión. Se evaluaron cuatro tratamientos, 30% CAC + 17.5% MS: WPC, 17.5% CAC + 30% MS: WPC, 30% CAC + 17.5% MS: SPI y 17.5% CAC + 30% MS: SPI, donde CAC = portador la concentración del agente (g de portador / g de sólidos de pulpa de jussara) y las proporciones MS: WPC y MS: SPI indican los gramos de proteína (WPC o SPI) por 100 g de portador. La concentración de 30% CAC + 17,5% MS: WPC mejoró la humectabilidad, el contenido de antocianinas, el contenido fenólico total y la eficiencia de encapsulación. Las partículas presentaron superficies más suaves con un número reducido de pliegues cuando estaba presente WPC. El uso de WPC o SPI junto con MS se mostró como una opción válida en el secado por aspersión de pulpa de jussara.

Referencias

Ahmed, M., Akter, M. S., Lee, J.-C., & Eun, J.-B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. https://doi.org/10.1016/j.lwt.2010.05.014

AOAC. (2016) Official method of analysis of the Association of Official Analytical Chemists (18th ed.). Gaithersburg, Maryland.

Barbosa, M. I. M. J., Borsarelli, C. D., & Mercadante, A. Z. (2005). Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 38(8–9), 989–994. https://doi.org/10.1016/j.foodres.2005.02.018

Borges, G. D. S. C., Vieira, F. G. K., Copetti, C., Gonzaga, L. V., & Fett, R. (2011). Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology. Food Research International, 44(3), 708–715. https://doi.org/10.1016/j.foodres.2010.12.025

Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352. https://doi.org/10.1016/j.foodres.2014.02.003

Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Cen, H., Bao, Y., He, Y., & Sun, D.-W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82(2), 253–260. https://doi.org/10.1016/j.jfoodeng.2007.02.039

Cinquanta, L., Di Matteo, M., & Esti, M. (2002). Physical pre-treatment of plums (Prunus domestica). Part 2. Effect on the quality characteristics of different prune cultivars. Food Chemistry, 79(2), 233–238. https://doi.org/10.1016/S0308-8146(02)00138-3

de Beer, D., Pauck, C. E., Aucamp, M., Liebenberg, W., Stieger, N., van der Rijst, M., & Joubert, E. (2018). Phenolic and physicochemical stability of a functional beverage powder mixture during storage: effect of the microencapsulant inulin and food ingredients. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.8787

de Brito, E. S., de Araújo, M. C. P., Alves, R. E., Carkeet, C., Clevidence, B. A., & Novotny, J. A. (2007). Anthocyanins Present in Selected Tropical Fruits: Acerola, Jambolão, Jussara, and Guajiru. Journal of Agricultural and Food Chemistry, 55(23), 9389–9394. https://doi.org/10.1021/jf0715020

Edris, A. E., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333. https://doi.org/10.1016/j.foodchem.2016.02.143

Fang, Z., & Bhandari, B. (2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139–1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Ferrari, C. C., Germer, S. P. M., Alvim, I. D., Vissotto, F. Z., & de Aguirre, J. M. (2012). Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. International Journal of Food Science & Technology, 47(6), 1237–1245. https://doi.org/10.1111/j.1365-2621.2012.02964.x

Francis, F. J. (1982). Anthocyanins as Food Colors. In: Markasis, P., Analysis of anthocyanins. New York: Academic Press, Cap. 5, p.182-205.

García-Lucas, K. A., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Campanella, O. H., Patel, B. K., & Barriada-Bernal, L. G. (2017). Physical properties of spray dryed Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40(3), e12470. https://doi.org/10.1111/jfpe.12470

Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028

I Ré, M. (1998). MICROENCAPSULATION BY SPRAY DRYING. Drying Technology, 16(6), 1195–1236. https://doi.org/10.1080/07373939808917460

Jafari, S. M., Ghalegi Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59–65. https://doi.org/10.1016/j.powtec.2017.01.070

Maia, P. D. D. S., dos Santos Baião, D., da Silva, V. P. F., de Araújo Calado, V. M., Queiroz, C., Pedrosa, C., Valente-Mesquita, V. L., & Pierucci, A. P. T. R. (2019). Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food and Bioprocess Technology, 12(12), 2107–2119. https://doi.org/10.1007/s11947-019-02376-x

Nambi, V. E., Manickavasagan, A., Thangavel, K., Aniesrani, D. S., Chandrasekar, V., & Raghavan, G. S. V. (2017). Effect of carrier material on flow characteristics of date pulp feedstock. Drying Technology, 35(1), 116–124. https://doi.org/10.1080/07373937.2016.1162170

Paim, D. R. S. F., Costa, S. D. O., Walter, E. H. M., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT, 74, 21–25. https://doi.org/10.1016/j.lwt.2016.07.022

Pereira, D. C. de S., Beres, C., Gomes, F. dos S., Tonon, R. V., & Cabral, L. M. C. (2020). Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents. Drying Technology, 38(9), 1175–1185. https://doi.org/10.1080/07373937.2019.1625363

Reineccius, G. A. (2004). The Spray Drying of Food Flavors. Drying Technology, 22(6), 1289–1324. https://doi.org/10.1081/DRT-120038731

Rocha, J. de C. G., de Barros, F. A. R., Perrone, Í. T., Viana, K. W. C., Tavares, G. M., Stephani, R., & Stringheta, P. C. (2019). Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technology, 343, 317–325. https://doi.org/10.1016/j.powtec.2018.11.040

Santana, A. A., Cano-Higuita, D. M., de Oliveira, R. A., & Telis, V. R. N. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chemistry, 212, 1–9. https://doi.org/10.1016/j.foodchem.2016.05.148

Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029

Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai ( Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950–1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x

Zhang, L., Zeng, X., Fu, N., Tang, X., Sun, Y., & Lin, L. (2018). Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Research International, 106, 383–393. https://doi.org/10.1016/j.foodres.2018.01.004

Descargas

Publicado

2021-01-24

Número

Sección

Ingenierías

Cómo citar

Propiedades fisicoquímicas y nutricionales de la pulpa de jussara en polvo (Euterpe edulis M.) por secado por atomización. Research, Society and Development, [S. l.], v. 10, n. 1, p. e44110111256, 2021. DOI: 10.33448/rsd-v10i1.11256. Disponível em: https://www.rsdjournal.org/rsd/article/view/11256. Acesso em: 5 dec. 2025.