Machine Learning aplicado à atenção domiciliar para predição de condição de óbito

Autores

DOI:

https://doi.org/10.33448/rsd-v11i14.36078

Palavras-chave:

Atenção domiciliar à saúde, Gestão em saúde, Ciência de dados, Aprendizado de máquina, Inteligência artificial.

Resumo

Nos processos de atenção domiciliar, onde pacientes são cuidados em casa por equipes de saúde multidisciplinares, diversos são os desafios para o gerenciamento e monitoramento à distância, não sendo raros os casos em que os recursos não são empregados nas situações realmente prioritárias. O advento da tecnologia, a disponibilidade de dados nos diversos sistemas de gestão e bem como as novas ferramentas de suporte à tomada de decisão trazem enormes possibilidades, retorno financeiro e maior conforto para pacientes e famílias. Este trabalho tem o objetivo de apresentar a aplicação de aprendizado de máquina, utilizando-se da metodologia CRISP-DM, para identificação de pacientes com maior chance de hospitalização ou óbito domiciliar.

Referências

Chen, P. H. C., Liu, Y., & Peng, L. (2019) How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414. https://doi.org/10.1038/s41563-019-0345-0,

IBM (2022) Introduction to CRISP-DM. <https://www.ibm.com/docs/en/spss-modeler/18.2.0?topic=guide-introduction-crisp-dm>

Panesar, A. (2019) Machine learning and AI for healthcare. Coventry, UK: Apress, 2019.

Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. The Knowledge Engineering Review, 25(2), 137-166.

Rehem, T. C. M. S. B., & Trad, L. A. B. (2005). Assistência domiciliar em saúde: subsídios para um projeto de atenção básica brasileira. Ciência & Saúde Coletiva, 10, 231-242.REHEM & TRAD, 2005.

Mendes Júnior, W. V. (2000). Assistência domiciliar: uma modalidade de assistência para o Brasil? Dissertação de Mestrado, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brasil.

Ramallo, V. J. G., & Tamayo, M. I. P. (1998). Historia de la hospitalización a domicilio, pp. 13-22. In MDD Glez (coord.). Hospitalización a domicilio. Hoechst Marion Roussel, Espanha.

Google (2022) Machine Learning Crash Course. < https://developers.google.com/machine-learning/crash-course/>

Pedregosa. et al.,(2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Journal of Machine Learning Research, 12, pp. 2825-2830.

Minsky, M., & Papert, S. (1969). Perceptrons. M.I.T. Press. EUA.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. EUA.

Niaksu, O. (2015). CRISP Data Mining Methodology Extension for Medical Domain. Baltic J. Modern Computing. 3. 92-109.

Tavares, L. D., Manoel, A., Donato, T. H. R., Cesena, F., Minanni, C. A., Kashiwagi, N. M., & Szlejf, C. (2022). Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Research and Clinical Practice, 191, 110047.

Malekloo, A., Ozer, E., AlHamaydeh, M., & Girolami, M. (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Structural Health Monitoring. 21(4):1906-1955.

McCoy, L. G., Brenna, C. T., Chen, S. S., Vold, K., & Das, S. (2022). Believing in black boxes: Machine learning for healthcare does not need explainability to be evidence-based. Journal of clinical epidemiology, 142, 252-257.

Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine learning in healthcare: Operational and financial impact. In Innovative Technology at the Interface of Finance and Operations (pp. 153-174). Springer, Cham.

Rubinger, L., Gazendam, A., Ekhtiari, S., & Bhandari, M. (2022). Machine learning and artificial intelligence in research and healthcare. Injury. ISSN 0020-1383

Silva, D. H. C., Alves, V. K., & Savio, E. (2022). Redes neurais artificiais aplicadas à moagem de minério de ferro combinadas a modelos empíricos. Research, Society and Development, 11(13), e84111332329-e84111332329.

London, A. J. (2019). Artificial intelligence and black‐box medical decisions: accuracy versus explainability. Hastings Center Report, 49(1), 15-21.

Downloads

Publicado

2022-10-25

Edição

Seção

Ciências da Saúde

Como Citar

Machine Learning aplicado à atenção domiciliar para predição de condição de óbito . Research, Society and Development, [S. l.], v. 11, n. 14, p. e230111436078, 2022. DOI: 10.33448/rsd-v11i14.36078. Disponível em: https://www.rsdjournal.org/rsd/article/view/36078. Acesso em: 14 dez. 2025.