Machine Learning aplicado à atenção domiciliar para predição de condição de óbito
DOI:
https://doi.org/10.33448/rsd-v11i14.36078Palavras-chave:
Atenção domiciliar à saúde, Gestão em saúde, Ciência de dados, Aprendizado de máquina, Inteligência artificial.Resumo
Nos processos de atenção domiciliar, onde pacientes são cuidados em casa por equipes de saúde multidisciplinares, diversos são os desafios para o gerenciamento e monitoramento à distância, não sendo raros os casos em que os recursos não são empregados nas situações realmente prioritárias. O advento da tecnologia, a disponibilidade de dados nos diversos sistemas de gestão e bem como as novas ferramentas de suporte à tomada de decisão trazem enormes possibilidades, retorno financeiro e maior conforto para pacientes e famílias. Este trabalho tem o objetivo de apresentar a aplicação de aprendizado de máquina, utilizando-se da metodologia CRISP-DM, para identificação de pacientes com maior chance de hospitalização ou óbito domiciliar.
Referências
Chen, P. H. C., Liu, Y., & Peng, L. (2019) How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414. https://doi.org/10.1038/s41563-019-0345-0,
IBM (2022) Introduction to CRISP-DM. <https://www.ibm.com/docs/en/spss-modeler/18.2.0?topic=guide-introduction-crisp-dm>
Panesar, A. (2019) Machine learning and AI for healthcare. Coventry, UK: Apress, 2019.
Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. The Knowledge Engineering Review, 25(2), 137-166.
Rehem, T. C. M. S. B., & Trad, L. A. B. (2005). Assistência domiciliar em saúde: subsídios para um projeto de atenção básica brasileira. Ciência & Saúde Coletiva, 10, 231-242.REHEM & TRAD, 2005.
Mendes Júnior, W. V. (2000). Assistência domiciliar: uma modalidade de assistência para o Brasil? Dissertação de Mestrado, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brasil.
Ramallo, V. J. G., & Tamayo, M. I. P. (1998). Historia de la hospitalización a domicilio, pp. 13-22. In MDD Glez (coord.). Hospitalización a domicilio. Hoechst Marion Roussel, Espanha.
Google (2022) Machine Learning Crash Course. < https://developers.google.com/machine-learning/crash-course/>
Pedregosa. et al.,(2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Journal of Machine Learning Research, 12, pp. 2825-2830.
Minsky, M., & Papert, S. (1969). Perceptrons. M.I.T. Press. EUA.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. EUA.
Niaksu, O. (2015). CRISP Data Mining Methodology Extension for Medical Domain. Baltic J. Modern Computing. 3. 92-109.
Tavares, L. D., Manoel, A., Donato, T. H. R., Cesena, F., Minanni, C. A., Kashiwagi, N. M., & Szlejf, C. (2022). Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Research and Clinical Practice, 191, 110047.
Malekloo, A., Ozer, E., AlHamaydeh, M., & Girolami, M. (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Structural Health Monitoring. 21(4):1906-1955.
McCoy, L. G., Brenna, C. T., Chen, S. S., Vold, K., & Das, S. (2022). Believing in black boxes: Machine learning for healthcare does not need explainability to be evidence-based. Journal of clinical epidemiology, 142, 252-257.
Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine learning in healthcare: Operational and financial impact. In Innovative Technology at the Interface of Finance and Operations (pp. 153-174). Springer, Cham.
Rubinger, L., Gazendam, A., Ekhtiari, S., & Bhandari, M. (2022). Machine learning and artificial intelligence in research and healthcare. Injury. ISSN 0020-1383
Silva, D. H. C., Alves, V. K., & Savio, E. (2022). Redes neurais artificiais aplicadas à moagem de minério de ferro combinadas a modelos empíricos. Research, Society and Development, 11(13), e84111332329-e84111332329.
London, A. J. (2019). Artificial intelligence and black‐box medical decisions: accuracy versus explainability. Hastings Center Report, 49(1), 15-21.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Daniel Henrique Cordeiro Silva; Elisa Maria do Nascimento Timo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
