Bioatividade da liga Ti6Al4V com biovidro e proteção a corrosão por revestimento com silano

Autores

DOI:

https://doi.org/10.33448/rsd-v10i6.15308

Palavras-chave:

Biocompatibilidade, Biovidro, Corrosão, Filme de Silano, Ti6Al4V.

Resumo

A liga Ti6Al4V é usualmente empregada como biomaterial, porém, quando em uso, apresenta alguns inconvenientes como a corrosão causada pela liberação de íons alumínio e vanádio além do comportamento bioinert. Os revestimentos bioativos oferecem um efeito de barreira e bioatividade, promovendo processos de biocompatibilidade e osseointegração. O presente trabalho tem como objetivo estudar o comportamento de biocompatibilidade de um filme de silano contendo biovidro depositado sobre um substrato de liga de titânio (Ti6Al4V). O efeito da rugosidade superficial do substrato metálico também foi avaliado. Os sistemas filme / substrato foram caracterizados quanto ao comportamento morfológico, químico, físico, eletroquímico e citotoxicidade e viabilidade celular. Os principais resultados apontaram que filmes de silano aumentam a resistência à corrosão de substratos de liga de titânio. Os resultados biológicos indicaram crescimento de células osteoblásticas (MG-63), para todas as condições de teste. O filme de biovidro depositado no substrato moído exibiu a maior densidade celular.

Biografia do Autor

  • Patricia Marcolin, Universidade de Caxias do Sul

    Universidade de Caxias do Sul

  • Caroline Olivieri da Silva Frozza, Universidade de Caxias do Sul

    Universidade de Caxias do Sul

  • João Antonio Pêgas Henriques, Universidade de Caxias do Sul

    Universidade de Caxias do Sul

  • Sandra Raquel Kunst, FEEVALE University

    FEEVALE University

  • Murilo Camuri Crovace, Federal University of São Carlos

    Federal University of São Carlos

  • Mariana Roesch Ely , Universidade de Caxias do Sul

    Universidade de Caxias do Sul

  • Lucia Vieira, University of Paraiba Valley

    University of Paraiba Valley

  • María Cristina Moré Farias, Universidade de Caxias do Sul

    Universidade de Caxias do Sul

  • Rosmary Nichele Brandalise, Universidade de Caxias do Sul

    Universidade de Caxias do Su

Referências

Ahmed, A. A., Mhaede, M., Wollmann, M., & Wagner, L. (2016). Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy.

Applied Surface Science, 363, 50–58. https://doi.org/10.1016/j.apsusc.2015.12.019

Andrade, A. D., Marinho, C. F., Barcelos, M., Zorzal, M. B., & Conz, M. B. (2007). Bone biology: the review of literature. 4(6), 659–662.

Asri, R. I. M., Harun, W. S. W., Samykano, M., Lah, N. A. C., Ghani, S. A. C., Tarlochan, F., & Raza, M. R. (2017). Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering C, 77, 1261–1274. https://doi.org/10.1016/j.msec.2017.04.102

Aydınoğlu, A., & Yoruç, A. B. H. (2017). Effects of silane-modified fillers on properties of dental composite resin. Materials Science and Engineering C, 79, 382–389. https://doi.org/10.1016/j.msec.2017.04.151

Baxter, L. C., Frauchiger, V., Textor, M., Ap Gwynn, I., Richards, R. G., Bongrand, P., & Brunette, D. (2002). Fibroblast and osteoblast adhesion and morphology on calcium phosphatesurfaces. European Cells and Materials, 4(0), 1–17. https://doi.org/10.22203/eCM.v004a01

Biggs, M. J. P., Richards, R. G., & Dalby, M. J. (2010). Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(5), 619–633. https://doi.org/10.1016/j.nano.2010.01.009

Certhoux, E., Ansart, F., Turq, V., Bonino, J. P., Sobrino, J. M., Garcia, J., & Reby, J. (2013). New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Progress in Organic Coatings, 76(1), 165–172. https://doi.org/10.1016/j.porgcoat.2012.09.002

Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering R: Reports, 87, 1–57. https://doi.org/10.1016/j.mser.2014.10.001

Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion studies of titania-coated NiTi prepared by sol-gel technique and steam crystallization. Applied Surface Science, 253(16), 6762–6768. https://doi.org/10.1016/j.apsusc.2007.01.121

Chowdhury, S. S., Pandey, P. R., Kumar, R., & Roy, S. (2017). Effect of shape of protrusions and roughness on the hydrophilicity of a surface. Chemical Physics Letters, 685, 34–39. https://doi.org/10.1016/j.cplett.2017.07.015

Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. D. R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C, 31(5), 833–839. https://doi.org/10.1016/j.msec.2010.12.013

Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558–569. https://doi.org/10.1038/nmat3980

De Graeve, I., Vereecken, J., Franquet, A., Van Schaftinghen, T., & Terryn, H. (2007). Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Progress in Organic Coatings, 59(3), 224–229. https://doi.org/10.1016/j.porgcoat.2006.09.006

El-Ghannam, A., & Ducheyne, P. (2017). 1.9 Bioactive Ceramics☆. In P. Ducheyne (Ed.), Comprehensive Biomaterials II (pp. 204–234). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-803581-8.10169-9

Fu, T., Wu, X. M., Wu, F., Luo, M., Dong, B. H., & Ji, Y. (2012). Surface modification of NiTi alloy by sol-gel derived porous TiO2 film. Transactions of Nonferrous Metals Society of China (English Edition), 22(7), 1661–1666. https://doi.org/10.1016/S1003-6326(11)61370-8

Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

Gittens, R. A., McLachlan, T., Olivares-Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R., Schwartz, Z., Sandhage, K. H., & Boyan, B. D. (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32(13), 3395–3403. https://doi.org/10.1016/j.biomaterials.2011.01.029

Hallab, N. J., Jacobs, J. J., & Katz, J. L. (2004). Orthopedic Applications. In B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine (2nd ed., pp. 527–555). Elsevier Academic Press.

Harada, R., Takemoto, S., Kinoshita, H., Yoshinari, M., & Kawada, E. (2016). Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment. Materials Science and Engineering C, 62, 268–273. https://doi.org/10.1016/j.msec.2016.01.065

Hotchkiss, K. M., Reddy, G. B., Hyzy, S. L., Schwartz, Z., Boyan, B. D., & Olivares-Navarrete, R. (2016). Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia, 31, 425–434. https://doi.org/10.1016/j.actbio.2015.12.003

Huang, Q., Elkhooly, T. A., Liu, X., Zhang, R., Yang, X., Shen, Z., & Feng, Q. (2016). Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids and Surfaces B: Biointerfaces, 145, 37–45. https://doi.org/10.1016/j.colsurfb.2016.04.031

Ibrahim, M. Z., Sarhan, A. A. D., Yusuf, F., & Hamdi, M. (2017). Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds, 714, 636–667. https://doi.org/10.1016/j.jallcom.2017.04.231

Köche, J. C. (2011). Fundamentos de metodologia científica: Teoria da ciência e iniciação à pesquisa. Petrópolis, RJ: Vozes.

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

Kota, A. K., Kwon, G., & Tuteja, A. (2014). The design and applications of superomniphobic surfaces. NPG Asia Materials, 6(6), 1–16. https://doi.org/10.1038/am.2014.34

Kunst, S. R., Cardoso, H. R. P., Beltrami, L. V. R., Oliveira, C. T., Menezes, T. L., Ferreira, J. Z., & Malfatti, C. de F. (2015). New Sol-gel Formulations to Increase the Barrier Effect of a Protective Coating Against the Corrosion and Wear of Galvanized Steel. Materials Research, 18(1), 138–150. https://doi.org/10.1590/1516-1439.288914

Kunst, S. R., Korb, M. de A., Menezes, T. L., Oliveira, C. T., Malfatti, C. de F., & Tessaro, G. (2013). Influence of the curing process of the hybrid films on the performance of coatings obtained by epoxy painting. Metallurgy and Materials, 66(3), 309–316. https://doi.org/10.1590/S0370-44672013000300007

Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: The role of laser surface engineering. In Journal of Biomaterials Applications (Vol. 20, Issue 1). https://doi.org/10.1177/0885328205052974

Kuscer, D., Kovač, J., Kosec, M., & Andriesen, R. (2008). The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium-oxygen system. Journal of the European Ceramic Society, 28(3), 577–584. https://doi.org/10.1016/j.jeurceramsoc.2007.07.014

Liang, J., Hu, Y., Wu, Y., & Chen, H. (2014). Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution. Surface and Coatings Technology, 240, 145–153. https://doi.org/10.1016/j.surfcoat.2013.12.028

Malaval, L., Liu, F., Roche, P., & Aubin, J. E. (1999). Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. Journal of Cellular Biochemistry, 74(4), 616–627. https://doi.org/10.1002/(SICI)1097-4644(19990915)74:4<616::AID-JCB11>3.0.CO;2-Q

Mathew, M. T., Abbey, S., Hallab, N. J., Hall, D. J., Sukotjo, C., & Wimmer, M. A. (2012). Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: Synergistic interactions of wear and corrosion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 100 B(6), 1662–1671. https://doi.org/10.1002/jbm.b.32735

Mattila, P. K., & Lappalainen, P. (2008). Filopodia: Molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 9(6), 446–454. https://doi.org/10.1038/nrm2406

Mohammadloo, H. E., Sarabi, A. A., Sabbagh Alvani, A. A., Sameie, H., & Salimi, R. (2012). Nano-ceramic hexafluorozirconic acid based conversion thin film: Surface characterization and electrochemical study. Surface and Coatings Technology, 206(19–20), 4132–4139. https://doi.org/10.1016/j.surfcoat.2012.04.009

Murugan, N., Kavitha, L., Shinyjoy, E., Rajeswari, D., Vimala, K., Kannan, S., & Gopi, D. (2015). Smart rose flower like bioceramic/metal oxide dual layer coating with enhanced anti-bacterial, anti-cancer, anti-corrosive and biocompatible properties for improved orthopedic applications. RSC Advances, 5(104), 85831–85844. https://doi.org/10.1039/c5ra17747b

Olivares-Navarrete, R., Rodil, S. E., Hyzy, S. L., Dunn, G. R., Almaguer-Flores, A., Schwartz, Z., & Boyan, B. D. (2015). Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials, 51, 69–79. https://doi.org/10.1016/j.biomaterials.2015.01.035

Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., Kim, H.-W., & Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001

Pandiyaraj, K. N., Selvarajan, V., Rhee, Y. H., Kim, H. W., & Pavese, M. (2010). Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity. Colloids and Surfaces B: Biointerfaces, 79(1), 53–60. https://doi.org/10.1016/j.colsurfb.2010.03.023

Pereira, A., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, RS: Universidade de Santa Maria.

Pires, A. L. R., Bierhalz, A. C. K., & Moraes, A. M. (2015). Biomateriais: tipos, aplicações e mercado. Química Nova, 38(7), 957–971. https://doi.org/10.5935/0100-4042.20150094

Punt, I. M., Visser, V. M., Van Rhijn, L. W., Kurtz, S. M., Antonis, J., Schurink, G. W. H., & Van Ooij, A. (2008). Complications and reoperations of the SB Charité lumbar disc prosthesis: Experience in 75 patients. European Spine Journal, 17(1), 36–43. https://doi.org/10.1007/s00586-007-0506-8

Quéré, D. (2008). Wetting and Roughness. Annual Review of Materials Research, 38(1), 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434

Rasouli, R., Barhoum, A., & Uludag, H. (2018). A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomaterials Science, 6(6), 1312–1338. https://doi.org/10.1039/c8bm00021b

Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M. C., Pacha-Olivenza, M. ángel, Crespo, L., Saldaña, L., Vilaboa, N., González-Martín, M. L., & Babiano, R. (2013). Controlled silanization-amination reactions on the Ti6Al4V surface for biomedical applications. Colloids and Surfaces B: Biointerfaces, 106, 248–257. https://doi.org/10.1016/j.colsurfb.2013.01.034

Romagnoli, C., D’Asta, F., & Brandi, M. L. (2013). Drug delivery using composite scaffolds in the context of bone tissue engineering. Clinical Cases in Mineral and Bone Metabolism, 10(3), 155–161. https://doi.org/10.11138/ccmbm/2013.10.3.155

Romano, A. P., Fedel, M., Deflorian, F., & Olivier, M. G. (2011). Silane sol-gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. Progress in Organic Coatings, 72(4), 695–702. https://doi.org/10.1016/j.porgcoat.2011.07.012

Rosa, M. B., Albrektsson, T., Francischone, C. E., Schwartz Filho, H. O., & Wennerberg, A. (2013). Micrometric characterization of the implant surfaces from the five largest companies in Brazil, the second largest worldwide implant mrket. The International Journal of Oral & Maxillofacial Implants, 28(2), 358–365. https://doi.org/10.11607/jomi.2791

Sakai, R. T., Di Da Cruz, F. M. L., De Melo, H. G., Benedetti, A. V., Santilli, C. V., & Suegama, P. H. (2012). Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5% NaCl solution. Progress in Organic Coatings, 74(2), 288–301. https://doi.org/10.1016/j.porgcoat.2012.01.001

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2017). Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium–aluminum–vanadium alloy. Journal of Applied Polymer Science (Online). https://doi.org/10.1002/app.45470

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2018). Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications: Influence of pH of Sol. Journal of Materials Engineering and Performance, 27(6), 2863–2874. https://doi.org/10.1007/s11665-018-3368-9

Savaris, M., Santos, V. dos, & Brandalise, R. N. (2016). Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering C, 69, 661–667. https://doi.org/10.1016/j.msec.2016.07.031

Sepulveda, P., Jones, J. R., & Hench, L. L. (2002). In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 61(2), 301–311. https://doi.org/10.1002/jbm.10207

Shoucheng, C., Guo, Y., Liu, R., Wu, S., Fang, J., Huang, B., Li, Z., Chen, Z., & Chen, Z. (2018). Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces B: Biointerfaces, 164, 58–69. https://doi.org/10.1016/j.colsurfb.2018.01.022

Silva-Bermudez, P., & Rodil, S. E. (2013). An overview of protein adsorption on metal oxide coatings for biomedical implants. Surface and Coatings Technology, 233, 147–158. https://doi.org/10.1016/j.surfcoat.2013.04.028

Sjöström, T., Brydone, A. S., Meek, R. D., Dalby, M. J., Su, B., & Mcnamara, L. E. (2013). Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices. Nanomedicine, 8(1), 89–104. https://doi.org/10.2217/nnm.12.177

Slepička, P., Michaljaničová, I., Rimpelová, S., & Švorčík, V. (2017). Surface roughness in action – Cells in opposition. Materials Science and Engineering C, 76, 818–826. https://doi.org/10.1016/j.msec.2017.03.061

Su, Y., Luo, C., Zhang, Z., Hermawan, H., Zhu, D., Huang, J., Liang, Y., Li, G., & Ren, L. (2018). Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 77(January 2017), 90–105. https://doi.org/10.1016/j.jmbbm.2017.08.035

Tengvall, P., & Lundström, I. (1992). Physico-chemical considerations of titanium as a biomaterial. Clinical Materials, 9, 115–134.

van Ooij, W. J., Zhu, D., Stacy, M., Seth, A., Mugada, T., Gandhi, J., & Puomi, P. (2005). Corrosion protection properties of organofunctional silanes - An overview. Tsinghua Science and Technology, 10(6), 639–664. https://doi.org/10.1016/S1007-0214(05)70134-6

Veronesi, F., Giavaresi, G., Fini, M., Longo, G., Ioannidu, C. A., Scotto d’Abusco, A., Superti, F., Panzini, G., Misiano, C., Palattella, A., Selleri, P., Di Girolamo, N., Garbarino, V., Politi, L., & Scandurra, R. (2017). Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Materials Science and Engineering C, 70, 264–271. https://doi.org/10.1016/j.msec.2016.08.076

Wang, M., Wang, Y., Chen, Y., & Gu, H. (2013). Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology. Applied Surface Science, 268, 73–78. https://doi.org/10.1016/j.apsusc.2012.11.159

Wen-Cheng, C., & Ko, C. L. (2013). Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Materials Science and Engineering C, 33(5), 2713–2722. https://doi.org/10.1016/j.msec.2013.02.040

Wennerberg, A., & Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20(SUPPL. 4), 172–184. https://doi.org/10.1111/j.1600-0501.2009.01775.x

Zanotto, E. D., Filho, O. P., & Souza, M. T. (2013). Vitreous composition, bioactive vitreous fibres and fabrics, and articles. Patent WO 2015/021519. PCT/BR20 14/000275.

Zareidoost, A., Yousefpour, M., Ghasemi, B., & Amanzadeh, A. (2012). The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of Materials Science: Materials in Medicine, 23(6), 1479–1488. https://doi.org/10.1007/s10856-012-4611-9

Zhao, B., Wang, H., Qiao, N., Wang, C., & Hu, M. (2017). Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Materials Science and Engineering C, 70, 832–841. https://doi.org/10.1016/j.msec.2016.07.045

Downloads

Publicado

2021-05-28

Edição

Seção

Engenharias

Como Citar

Bioatividade da liga Ti6Al4V com biovidro e proteção a corrosão por revestimento com silano. Research, Society and Development, [S. l.], v. 10, n. 6, p. e23310615308, 2021. DOI: 10.33448/rsd-v10i6.15308. Disponível em: https://www.rsdjournal.org/rsd/article/view/15308. Acesso em: 5 dez. 2025.