Carryover de herbicidas aplicados em pré-emergência em solo com textura franco argiloso arenosa
DOI:
https://doi.org/10.33448/rsd-v14i10.49610Palavras-chave:
Herbicides, Carryover, Bioensaio, Cucumis sativus, Sorghum bicolor.Resumo
Os herbicidas aplicados em pré-emergência (PRE) controlam as plantas daninhas em estádios iniciais de crescimento e possibilitam vantagem competitiva para as plantas cultivadas durante o período de atividade residual dos herbicidas no solo. Contudo, a atividade residual de um herbicida pode durar por tempo suficiente para causar injúrias em plantas cultivadas em sucessão, efeito denominado carryover. Assim, objetivou-se com este trabalho estimar o período de atividade residual dos herbicidas diuron, indaziflam, metribuzin e sulfentrazone aplicados em PRE em um Latossolo Amarelo com textura franco argiloso arenosa por meio de bioensaios. Cada herbicida representou um experimento, instalado em vasos, em viveiro a céu aberto e num delineamento inteiramente casualizado com três repetições. As doses empregadas, em g ha-1, foram: diuron – 0, 1250 e 2550; indaziflam – 0, 50 e 100; metribuzin – 0, 480 e 960; e sulfentrazone – 0, 400 e 800. Como espécies indicadoras foram empregados pepino (Cucumis sativus) para o diuron, indaziflam e metribuzin, e sorgo (Sorghum bicolor) para o sulfentrazone. A ação residual no solo de todos os herbicidas avaliados provocou injúrias nas plantas indicadoras, cuja duração e intensidade variou com as doses testadas. O período de ação residual mais curto que provocou carryover foi de 21 dias com aplicação do sulfentrazone com a menor dose (400 g ha-1), e o mais longo, de 231 dias, com aplicação do indaziflam com a maior dose (100 g ha-1).
Referências
Almeida, C. D. S. et al. (2020). Diuron sorption, desorption and degradation in anthropogenic soils compared to sandy soil. Planta Daninha, 38, e020217146.
Araújo, G. R. et al. (2023). Cucumber bioassay and HPLC analysis to detect diuron residues in remineralized soils following Canavalia ensiformis cultivation as a phytoremediator. Horticulturae, 9, 1251.
Bayer. (2025). https://cs-assets.bayer.com/is/content/bayer/ALION_BULA_10-03-2025pdf
Brandenberger, L. P. et al. (2007). Injury potential from carryover of watermelon herbicide residues. Weed Technology, 21, 473-476.
Brabham, C. et al. (2014). Indaziflam herbicidal action: a potent cellulose biosynthesis inhibitor. Plant physiology, 166, 1177-1185.
Brum, C. S.; Franco, A. A. & Scorza Júnior, R. P. (2013). Degradação do herbicida sulfentrazone em dois solos de Mato Grosso do Sul. Revista Brasileira de Engenharia Agrícola e Ambiental, 17, 558-564.
Cadersa, Y. & Gungadurdoss, M. (2010). Carryover of soil-applied herbicides on flue-cured tobacco. University of Mauritius Research Journal, 16, 1-13.
Charnay, M. P. et al. (2005). Spatial variability in 14C‐herbicide degradation in surface and subsurface soils. Pest Management Science, 61, 845-855.
Cornelius, C. D. & Bradley, K. W. (2017). Carryover of common corn and soybean herbicides to various cover crop species. Weed Technology, 31, 21-31.
Egea, T. C. et al. (2017). Diuron degradation by bacteria from soil of sugarcane crops. Heliyon, 3, e00471.
Ellegaard-Jensen, L. et al. (2014). Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Science of the Total Environment, 466, 699-705.
Fantke, P. & Juraske, R. (2013). Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology, 47, 3548-3562.
Ferreira, E. B. et al. (2018). Package ‘ExpDes. pt’. R package version, 1.
Ferri, M. V. W. & Vidal, R. A. (2003). Persistência do herbicida acetochlor em função de sistemas de preparo e cobertura com palha. Ciência Rural, 33, 399-404.
Fontecha-Cámara, M. A. et al. (2008). Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons. Journal of hazardous materials, 156, 472-477.
Geoffroy, L. et al. (2002). Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pesticide Biochemistry and Physiology, 72, 178-185.
González-Delgado, A. M. et al. (2017). Effect of application rate and irrigation on the movement and dissipation of indaziflam. Journal of Environmental Sciences, 51, 111-119.
González-Delgado, A. M. & Shukla, M. K. (2020). Mobility, degradation, and uptake of indaziflam under greenhouse conditions. HortScience, 55, 1216-1221.
Guerra, N. et al. (2014). Sensibility of plant species to herbicides aminocyclopyrachlor and indaziflam. Planta Daninha, 32, 609-617.
Guimarães, A. C. D. et al. (2018). Role of soil physicochemical properties in quantifying the fate of diuron, hexazinone, and metribuzin. Environmental Science and Pollution Research, 25, 12419-12433.
Jeschke, P. (2016). Progress of modern agricultural chemistry and future prospects. Pest management science, 72, 433-455.
Jin, Y. et al. (2017). Diuron treatment reveals the different roles of two cyclic electron transfer pathways in photosystem II in Arabidopsis thaliana. Pesticide Biochemistry and Physiology, 137, 15-20.
Jursík, M. et al. (2015). Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Protection Science, 51, 214-222.
Kaapro, J. & Hall, J. (2012). Indaziflam–a new herbicide for pre-emergent control of weeds in turf, forestry, industrial vegetation and ornamentals. 23 rd Asian-Pacific Weed Science Society Conference, 224-227.
Lagat, S. C. et al. (2011). Metribuzin mobility in soil column as affected by environmental and physico-chemical parameters in Mumias sugarcane zone. Kenya. Journal of Agricultural and Biological Science, 6, 27-33.
Leal, J. F. L. et al. (2023). Photosystem II- and photosystem I- inhibitor herbicides-driven changes in the dynamics of photosynthetic energy dissipation of Conyza spp. Acta Physiologiae Plantarum, 45, 94.
Lin, A. Y. C. & Reinhard, M. (2005). Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental toxicology and Chemistry, 24, 1303-1309.
Lourenço, R. C. & Carvalho, S. J. P. D. (2015). Bioindicator demonstrates high persistence of sulfentrazone in dry soil. Pesquisa Agropecuária Tropical, 45, 326-332.
Lu, H. et al. (2019). A novel psbA mutation (Phe274–Val) confers resistance to PSII herbicides in wild radish (Raphanus raphanistrum). Pest Management Science, 75, 144-151.
Majumdar, K. & Singh, N. (2007). Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere, 66, 630-637.
Martinez, C. O. et al. (2008). The effects of moisture and temperature on the degradation of sulfentrazone. Geoderma, 147, 56-62.
Martinez, C. O. et al. (2010). Microbial degradation of sulfentrazone in a Brazilian rhodic hapludox soil. Brazilian Journal of Microbiology, 41, 209-217.
Mehdizadeh, M.; Alebrahim, M. T. & Roushani, M. (2017). Determination of two sulfonylurea herbicides residues in soil environment using HPLC and phytotoxicity of these herbicides by lentil bioassay. Bulletin of environmental contamination and toxicology, 99, 93-99.
Melo, C. A. D. et al. (2016). Herbicides carryover in systems cultivated with vegetable crops. Revista Brasileira de Herbicidas, 15, 67-78.
Melo, C. A. D. et al. (2017). Isolation and characteristics of sulfentrazone-degrading bacteria. Journal of Environmental Science and Health, Part B, 52, 115-121
Muhamad, H. et al. (2013). The fate of diuron in soil in a Malaysian oil palm plantation. Journal of Oil Palm Research, 25, 149-158.
Mutua, G. K., Ngigi, A. N. & Getenga, Z. M. (2016). Degradation characteristics of metribuzin in soils within the Nzoia River Drainage Basin, Kenya. Toxicological & Environmental Chemistry, 98, 800-813.
Nalini, R. R. P. et al. (2017). Persistence of sulfentrazone in soil under soybean and its carryover effect on bioindicators. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 67, 217-222.
Ohmes, G. A.; Hayes, R. M. & Mueller, T. C. (2000). Sulfentrazone dissipation in a Tennessee soil. Weed Technology, 14, 100-105.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Pyone, W. W. et al. (2024). Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola. PloS one, 19, e0306865.
Qin, X. et al. (2010). Structural insight into unique properties of protoporphyrinogen oxidase from Bacillus subtilis. Journal of Structural Biology, 170, 76-82.
Rachuy, J. S. & Fennimore, S. A. (2021). Vegetable response to sulfentrazone soil residues at four planting intervals. Weed Technology, 35, 216-222.
Ramanathan, S. S.; Gannon, T. W. & Maxwell, P. J. (2023). Dose-response of five weed species to indaziflam and oxadiazon. Weed Technology, 37(3), 303-312.
Ribeiro, V. H. V. et al. (2021). Evaluating efficacy of preemergence soybean herbicides using field treated soil in greenhouse bioassays. Weed Technology, 35, 830-837.
Rinella, M. J. et al. (2025). Simple bioassay for phytotoxic concentrations of the herbicide indaziflam in soil. Rangeland Ecology & Management, 100, 78-82.
Rizzardi, M. A.; Rockenbach, A. P. & Schneider, T. (2020). Residual herbicides increase the period prior to interference in soybean cultivars. Planta Daninha, 38, e020222194.
Rose, M. T. et al. (2022). Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. Science of The Total Environment, 833, 155105.
Savaris, Q. M. et al. (2019). Determination of residual effect of indaziflam and amicarbazone in two soils through bioassay. Revista Brasileira de Herbicidas, 18, 617.
Sebastian, D. J.; Nissen, S. J. & Rodrigues, J. D. S. (2016). Pre-emergence control of six invasive winter annual grasses with imazapic and indaziflam. Invasive Plant Science and Management, 9, 308-316.
Shitsuka, R. et al. (2014). Matemática fundamental para tecnologia. (2.ed). Editora Érica.
Torres, B. A. et al. (2018). Saflufenacil and indaziflam herbicide effects on agricultural crops and microorganisms. African Journal of Agricultural Research, 13, 872-885.
Walsh, K. D. et al. (2015). Biologically effective rate of sulfentrazone applied pre-emergence in soybean. Canadian Journal of Plant Science, 95, 339-344.
Wang, D. W. et al. (2019). Discovery of novel N-isoxazolinylphenyltriazinones as promising protoporphyrinogen IX oxidase inhibitors. Journal of Agricultural and Food Chemistry, 67, 12382-12392.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 José Roberto Antoniol Fontes, André Luiz Atroch, Ronaldo Ribeiro de Morais

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
