Remoção de cloro residual livre da água utilizando sistemas de fotólise por luz ultravioleta: Uma revisão

Autores

DOI:

https://doi.org/10.33448/rsd-v14i11.49725

Palavras-chave:

Fotólise, Tratamento de água, Lâmpadas ultravioletas, Remoção de cloro.

Resumo

A água, recurso natural essencial à sociedade, é amplamente utilizada em diversos setores, seja como matéria-prima em processos industriais, na agricultura, no lazer, na produção de componentes eletrônicos, cosméticos e fármacos, ou, principalmente, para o abastecimento público. Sua aplicação está diretamente relacionada à qualidade e pureza, determinadas pelo processo de tratamento ao qual é submetida. No tratamento de águas, o cloro é comumente empregado como agente oxidante e desinfetante, atuando como uma barreira contra a contaminação microbiológica. Contudo, mesmo em baixas concentrações, esse químico pode ser prejudicial a equipamentos sensíveis, comprometer a qualidade de produtos finais por meio de reações indesejadas e, em casos de descarte em elevadas concentrações, ser fatal para organismos aquáticos, causando impactos significativos ao ecossistema. Diante disso, a investigação de processos e tecnologias voltadas ao controle e à remoção do cloro residual livre torna-se de grande relevância. Como alternativa a mecanismos usuais de remoção, o processo de fotólise, baseado na exposição à radiação ultravioleta, vem ganhando destaque. Este artigo apresenta uma revisão sobre o uso da fotólise na remoção de cloro livre da água, abordando os mecanismos envolvidos nas reações, os tipos de reatores e os principais parâmetros que influenciam o processo.

Referências

Astuti, M. P.; Xie, R. & Aziz, N. S. (2017). Laboratory and pilot plant scale study on water dechlorination by medium pressure ultraviolet (UV) radiation. MATEC Web of Conferences. 101, 05001.

Atlantium. (2020a). Evaluation of Long-Term Membrane Performance with Continuous Use of Hydro-Optic UV Dechlorination at Plant Bowen. Atlantium Technologies.

Atlantium. (2020b). North American Baseload Power Station Installs Hydro-Optic UV System to Meet Boiler Make Up Water Dechlorination Needs. Atlantium Technologies.

Atlantium. (2024a). Disinfection & Dechlorination at Alabama Power Plant. Atlantium Technologies.

Atlantium. (2024b). UV Disinfection & Dechlorination at Cottonseed Processing Facility in Texas, US. Atlantium Technologies.

Bitter, D. & Rozenberg, Y. (2017). Non-chemical disinfection & dechlorination to protect RO and demineralizer treated boiler make-up water. PowerPlant Chemistry. 19 (5), 235-239.

Black & Veatch Corporation. (2009). White’s Handbook of Chlorination and Alternative Disinfectants. John Wiley & Sons, Inc.

Blatchley, E. R. (2023). Photochemical Reactors: Theory, Methods, and Applications of Ultraviolet Radiation. John Wiley & Sons.

Bolton, J. R. & Stefan, M. I. (2002). Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates. 28 (7), 857-870.

Breckenridge, R. (2014). Boiler Makeup Water Dechlorination Using Advanced Ultraviolet Technology at Plant Bowen Water Research Center. Electric Power Research Institute.

Cassan, D.; Mercier, B.; Castex, F. & Rambaud, A. (2006). Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. Chemosphere. 62 (9), 1507–1513.

Castro, G.; Ramil, M.; Cela, R. & Rodríguez, I. (2021). Assessment of UV combined with free chlorine for removal of valsartan acid from water samples. Science of The Total Environment. 762, 143173.

Chan, P. Y.; El-Din, M. G. & Bolton, J. R. (2012). A solar-driven UV/Chlorine advanced oxidation process. Water Research. 46 (17), 5672-5682.

Chen, T. H. (1967). Spectrophotometric determination of microquantities of chlorate, chlorite, hypochlorite and chloride in perchlorate. Analytical Chemistry. 39 (7), 804–813.

Cho, K.; Jeong, S.; Kim, H.; Choi, K.; Lee, S. & Bae, H. (2016). Simultaneous dechlorination and disinfection using vacuum UV irradiation for SWRO process. Desalination. 398, 22-29.

Cimetiere, N. & Laat, J. (2014). Effects of UV-dechloramination of swimming pool water on the formation of disinfection by-products: A lab-scale study. Microchemical Journal. 122, 34-41.

Cobo-Golpe, M.; Fernández-Fernández, V.; Arias, T.; Ramil, M.; Cela, R. & Rodríguez, I. (2022). Comparison of UV, chlorination, UV-hydrogen peroxide and UV-chlorine processes for tramadol removal: Kinetics study and transformation products identification. Journal of Environmental Chemical Engineering. 10 (3); 107854.

Crittenden, J. C.; Trussell, R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. (2012). MWH’s Water Treatment: Principles and Design. John Wiley & Sons, Inc.

Dabic, D.; Babic, S. & Skoric, I. (2019). The role of photodegradation in the environmental fate of hydroxychloroquine. Chemosphere. 230, 268-277.

Deng, J.; Wu, G.; Yuan, S.; Zhan, X.; Wang, W. & Hu, Z. (2018). Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry. 371, 151-158.

Dong, H.; Qiang, Z.; Hu, J. & Qu, J. (2017). Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism, and enhanced formation of halonitromethanes. Water Research. 121, 178-185.

Fang, J.; Fu, Y. & Shang, C. (2014). The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environmental Science & Technology. 48 (3), 1859–1868.

Feng, Y.; Smith, D. W. & Bolton, J. R. (2007). Photolysis of aqueous free chlorine species (HOCl and OCl–) with 254 nm ultraviolet light. Journal of Environmental Engineering and Science. 6 (3), 277-284.

Gao, Y.; Gao, N.; Chen, J. & Zhang, J. (2019). Oxidation of β-blocker atenolol by a combination of UV light and chlorine: Kinetics, degradation pathways and toxicity assessment. Separation and Purification Technology. 231, 115927.

Giroletti, C. L.; Menezes, J. C. S. Dos S.; Dalari, B. L. S. K.; Tomassoni, F.; Lapolli, F. R.; Lobo-Recio, M. A. & Nagel-Hassemer, M. E. (2020). Evaluation of the UV/H2O2 process in the wastewater treatment of the paper and cellulose industry. DAE. 70 (235), 6-20.

Guo, K.; Wu, Z.; Shang, C.; Yaou, B.; Hou, S.; Yang, X.; Song, W. & Fang, J. (2017). Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environmental Science & Technology. 51 (18), 10431-10439.

Guo, K.; Wu, Z.; Yan, S.; Yao, B.; Song, W.; Hua, Z.; Zhang, X.; Kong, X.; Li, X. & Fang, J. (2018). Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Research. 147, 184-194.

Huang, N.; Wang, T.; Wang, W.; Wu, Q.; Li, A. & Hu, H. (2017). UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation. Water Research. 114, 246-253.

Ilan, Y. A.; Czapski, G. & Meisel, D. (1976). The one-electron transfer redox potentials of free radicals: The oxygen/superoxide system. Biochimica et Biophysica Acta. 430, 209-224.

Jafvert, C. T & Valentine, R. L. (1992). Reaction Scheme for the Chlorination of Ammoniacal Water. Reaction Scheme for the Chlorination of Ammoniacal Water. Environmental Science & Technology. 25 (3), 577–586.

Jevtic, I.; Jaksic, S.; Markulov, D. S.; Bognar, S.; Abramovic, B. & Ivetic, T. (2023). Matrix Effects of Different Water Types on the Efficiency of Fumonisin B1 Removal by Photolysis and Photocatalysis Using Ternary- and Binary-Structured ZnO-Based Nanocrystallites. Catalysts. 13 (2), 375.

Jin, J.; El-Din, M. G. & Bolton, J. R. (2011). Assessment of the UV/Chlorine process as an advanced oxidation process. Water research, 45 (4), 1890-1896.

Khajouei, G.; Finklea, H. O. & Lin, L. (2022). UV/Chlorine advanced oxidation processes for degradation of contaminants in water and wastewater. A comprehensive review. Journal of Environmental Chemical Engineering. 10 (3), 107508.

Kishimoto, N. (2019). State of the Art of UV/Chlorine Advanced Oxidation Processes: Their Mechanism, Byproducts Formation, Process Variation, and Applications. Journal of Water and Environment Technology. 17 (5), 302-335.

Kong, X.; Jiang, J.; Ma, J.; Yang, Y.; Liu, W. & Liu, Y. (2016). Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products. Water Research. 90, 15-23.

Kucera, J. (2010). Reverse Osmosis: Design, Processes, and Applications for Engineers. Wiley Scrivener.

Kwon, M.; Yoon, Y.; Kim, S.; Jung, Y.; Hwang, T. & Kang, J. (2018). Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275 nm LED-UV and 254 nm LP-UV. Science of The Total Environment. 637, 1351-1357.

Laat, J. D. & Stefan, M. I. (2018). UV/Chlorine process. In: Stefan, Mihaela I. Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications. IWA Publishing.

Lei, Y.; Cheng, S.; Luo, N.; Yang, X & An, T. (2019). Rate Constants and Mechanisms of the Reactions of Cl• and Cl2•− with Trace Organic Contaminants. Environmental Science & Technology. 53 (19), 11170-11182.

Leong, L. Y. C.; Kuo, J. & Tang, C. (2008). Disinfection of Wastewater Effluent – Comparison of Alternative Technologies. IWA Publishing.

Li, G.; Huo, Z.; Wu, Q.; Chen, Z.; Wu, Y.; Lu, Y. & Hu, H. (2022). Photolysis of free chlorine and production of reactive radicals in the UV/ chlorine system using polychromatic spectrum LEDs as UV sources. Chemosphere. 286, 131828.

Li, J. & Blatchley, E. R. (2009). UV Photodegradation of Inorganic Chloramines. Environmental Science & Technology. 43 (1), 60-65.

McClean, J. (2007). Using UV for Dechlorination. https://www.wwdmag.com/water/article/10918917 /using-uv-for-dechlorination

Morris, J. C. (1966). The acid ionization constant of HOCl from 5 to 35°C. The Journal of Physical Chemistry. 70 (12), 3798–3805.

Nikravesh, B.; Shomalnasab, A.; Nayyer, A.; Aghababaei, N.; Zarebi, R. & Ghanbari, F. (2020). UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater. Journal of Environmental Chemical Engineering. 8 (5), 104244.

Nowell, L. H. & Hoigné, J. (a) (1992). Photolysis of aqueous chlorine at sunlight ultraviolet wavelengths: Degradation rates. Water Research. 26 (5), 593-598.

Nowell, L. H. & Hoigné, J. (b) (1992). Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths: Hydroxyl radical production. Water Research. 26 (5), 599-605.

Ormeci, B.; Ducoste, J. J. & Linden, K. G. (2005). UV disinfection of chlorinated water: impact on chlorine concentration and UV dose delivery. Journal of Water Supply: Research and Technology - Aqua. 54 (3), 189-199.

Pakzadeh, B.; Underwood, T. & French, M. (2014). Hydro-Optic UV Technology for Boiler Feed Water Dechlorination. Power Engineering.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. Santa Maria. Editora da UFSM.

Portal Saneamento Básico. (2021). Decloração por radiação UV, livre de químicos, para proteção de membranas OR. https://saneamentobasico.com.br/acervo-tecnico/decloracao-uv-membranas-or/

Preece, J .& Breckenridge, R. (2019). Southern company demonstrates alternative treatment for dechlorination of boiler makeup water. Electric Power Research Institute.

Qasim, S. R. & Zhu, G. (2018). Wastewater Treatment and Reuse: Theory and Design Examples. CRC Press.

Remucal, C. K. & Manley, D. (2016). Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environmental Science Water Research & Technology. 2 (4), 565-579.

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Shulga, I.; Devi, P. & Dalai, A. K. (2021). Photodecay of inorganic chloramines and disinfection by-products in synthetic and brine solution using UV irradiation. Journal of Water Process Engineering. 40, 101807.

Spellman, F. R. (2003). Handbook of Water and Wastewater Treatment Plant Operations. CRC Press.

Stefan, Mihaela I. (2018). Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications. IWA Publishing.

Swineheart, D. F. (1962). The Beer-Lambert Law. Journal of Chemical Education, 39 (7), 333-335.

Teo, Y. S.; Jafari, I.; Liang, F.; Jung, Y.; Hoek, J. P. V.; Ong, S. L. & Hu, J. (2022). Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: Effects of operational parameters and artificial neural networks modelling. Science of the Total Environment. 812, 152551.

Thomsen, C. L.; Madsen, D.; Poulsen, J. A.; Thogersen, J.; Jensen, S. J. K. & Keiding, S. R. (2001). Femtosecond photolysis of aqueous HOCl. The Journal of Chemical Physics. 115 (20), 9361–9369.

U.S. Environmental Protection Agency. (2006). Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. Washington, DC: Office of Water, U.S. Environmental Protection Agency.

Wang, W.; Wu, Q.; Huang, N.; Wang, T. & Hu, H. (2016). Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and Radical Species. Water Research. 98, 190-198.

Wang, W.; Zhang, X.; Wu, Q.; Du, Y. & Hu, H. (2017). Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity. Water Research. 124, 251-258.

Watts, M. & Linden, K. G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research. 41 (13), 2871-2878.

Weng, S. C.; Li, J.; Wood, K. V.; Kenttamaa, H. I.; Williams, P. E.; Amundson, L. M.; Blatchley & Ernest R. (2013). UV-induced effects on chlorination of creatinine. Water Research. 47 (14), 4948-4956.

Weng, S.; Li, J. & Blatchley, E. R. (2012). Effects of UV254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools. Water Research. 46 (8), 2674 2682.

Wrampe, J. & Carlson, C. (2023). Benefits of membrane filtration systems for ambient WFI production. https://www.crbgroup.com/insights/benefits-membrane-filtration-ambient-wfi.

Wu, Z.; Guo, K.; Fang, J.; Yang, X.; Xiao, H.; Hou, S.; Kong, X.; Shang, C.; Yang, X.; Meng, F. & Chen, L. (2017). Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. Water Research. 126, 651-360.

Xiang, Y.; Fang, J. & Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Research. 90, 301-308.

Xu, W. (2025). Chlorine-based advanced oxidation process for degradation of pollutants in water, wastewater and sludge: A comprehensive review. Journal of Water Process Engineering. 70, 106890.

Yeom, Y.; Han, J.; Zhang, X.; Shang, C.; Zhang, T.; Li, X.; Duan, X. & Dionysiou, D. (2021). A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants. Chemical Engineering Journal. 424, 130053.

Yin, R.; Ling, L. & Shang, C. (2018). Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Research. 142, 452-458.

Zhou, S.; Zhang, W.; Sun, J.; Zhu, S.; Li, K.; Meng, X.; Luo, J.; Shi, Z.; Zhou, D. & Crittenden, J. C. (2019). Oxidation Mechanisms of the UV/Free Chlorine Process: Kinetic Modeling and Quantitative Structure Activity Relationships. Environmental Science & Technology. 53 (8), 4335−4345.

Zhu, Y.; Wu, M.; Gao, N.; Chu, W.; Li, K. & Chen, S. (2018). Degradation of phenacetin by the UV/chlorine advanced oxidation process: Kinetics, pathways, and toxicity evaluation. Chemical Engineering Journal. 335, 520-529.

Downloads

Publicado

2025-11-25

Edição

Seção

Artigos de Revisão

Como Citar

Remoção de cloro residual livre da água utilizando sistemas de fotólise por luz ultravioleta: Uma revisão. Research, Society and Development, [S. l.], v. 14, n. 11, p. e211141149725, 2025. DOI: 10.33448/rsd-v14i11.49725. Disponível em: https://www.rsdjournal.org/rsd/article/view/49725. Acesso em: 5 dez. 2025.