Mitigación de los efectos de la restricción hídrica en soya con biofertilizante: alteraciones metabólicas y de conductancia estomática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19377

Palabras clave:

Aminoácido; Enzimas antioxidantes; Glycine max; Estrés oxidative.

Resumen

La soya tiene una demanda creciente en el mercado mundial, siendo la restricción hídrica un factor importante en la reducción de la productividad. Por ende, el desarrollo de tecnologías orientadas a mitigar los daños causados por el estrés hídrico se torna estratégico. Por lo tanto, el objetivo fue demostrar el papel del aminoácido ácido L-glutámico en la mitigación del estrés hídrico en plantas de soya. El estudio se llevó a cabo en invernadero con plantas de soya en etapa vegetativa sometidas a restricción hídrica con aplicaciones foliares de 1 mL L-1 de un biofertilizante obtenido a partir de fermentación bacteriana conteniendo 25% del aminoácido L-glutámico, 3 días antes de imponer la restricción hídrica y cuando la humedad del sustrato alcanzó el 50% de la capacidad de retención de agua (CRA). Se determinó la resistencia estomática con el pasar de los días y se realizaron tres recolecciones de material vegetal: al inicio de la restricción hídrica, un y cuatro días después de la rehidratación para análisis bioquímicas y enzimáticas. Las plantas que recibieron aplicación de biofertilizante al inicio de la restricción hídrica presentaron menos resistencia estomática, mientras que las plantas que recibieron aplicación tres días antes de CRA50% mostraron incrementos en la acumulación de azucares, en la actividad de la enzima reductasa de nitrato, de aminoácidos libres, en el contenido de prolina y en la enzima peroxidasa. Consecuentemente, se corroboró la reducción del daño causado por la restricción hídrica, con una reducción de la peroxidación lipídica en los tratamientos con aplicación de biofertilizante, mitigando los efectos del estrés oxidativo en plantas de soya.

Citas

Anda, A., Soós, G., Menyhárt, L., Kucserka, T. & Simon, B. (2020). Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Research, 245(107673). https://doi.org/10.1016/j.fcr.2019.107673

Bajguz, A. (2014). Nitric oxide: role in plants under abiotic stress. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, 137–159.

Basal, O., Szabó, A. & Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22 (100135). https://doi.org/10.1016/j.cpb.2020.100135

Bates, L. S., Waldern, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.

Batista-Silva, W., Heinemann, B., Rugen, N., Nunes-Nesi, A., Araújo, W.L., Braun, H. P. & Hildebrandt, T. M. (2019). The Role of Amino Acid Metabolism during Abiotic Stress Release. Plant Cell Environment, 42(5), 1630–1644. https://doi.org/10.1111/pce.13518

Bolouri-Moghaddam M. R., Le Roy K., Xiang L., Rolland F. & Van den Ende W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 277(9), 2022–2037. https://doi.org/10.1111/j.1742-4658.2010.07633.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(7), 248-254.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento, 2020. Instrução normativa nº 61, 474 de 8 de julho de 2020. Diário Oficial da União. https://www.in.gov.br/web/dou/-/instrucao475normativa-n-61-de-8-de-julho-de2020

Cao, Y.P., Gao, Z.K., Li, J.T., Xu, G.H. & Wang, M. (2010). Effects of extraneous glutamic acid on nitrate contents and quality of chinese chive. Acta Horticulturae, 856, 91-98. https://doi.org/10.17660/ActaHortic.2010.856.11

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galvan, A. & Fernandez, E. (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends in Plant Science, 22(2), 163–174.

Devi, S. R. & Prasad, M. N. V. (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science, 138(2), 157-65.

Dong, S., Jiang, Y., Dong, Y., Wang, L., Wang, W., Ma, Z., Yan, C., Ma, C. & Liu, L. (2019) A study on soybean responses to drought stress and rehydration. Saudi Journal of Biological Sciences, 26(8), 2006-2017. https://doi.org/10.1016/j.sjbs.2019.08.005

Du, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B. & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 146,1-12. doi:10.1016/j.plaphy.2019.11.003.

Farooq M., Wahid A., Kobayashi N., Fujita D. & Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable Agriculture., 29, 185-212. https://doi.org/10.1007/978-90-481-2666-8_12

Ferreira, D. F. (2019). Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37, 529-535. https://doi.org/10.28951/rbb.v37i4.450

Forde B. G. & Lea P. J. (2007). Glutamate in plants: metabolism, regulation and signalling. Journal of Experimental Biology, 58(9), 2339–2358. doi:10.1093/jxb/erm121

Gemin, L. G., Mógor, A. F., Mógor, G., Röder, C. & Szilagyi-Zecchin V. J. (2018). Changes in growth and concentration of amino acids in Chinese cabbage seedlings using bacterial fermented broth. Idesia, 36, 7-13. http://dx.doi.org/10.4067/S0718-34292018000100007

Giannopolitis, C. N. & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314.

Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. doi: 10.1016/j.plaphy.2010.08.016

Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4, 419. doi: 10.3389/fpls.2013.00419

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling and Behavior, 7(11),1456–1466. https://doi.org/10.4161/psb.21949

Heath, R. L. & Packer, L. (1968) Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198.

Jaworski, E. K. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical. Research Communications New York, 43(6), 1274-1279.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.

Liu, F., Jensen, C. R. & Andersen, M. N. (2004). Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: Its implication in altering pod set. Field Crops Research, 86(1), 1–13. doi: 10.1016/S0378-4290(03)00165-5

Liu, S., Zhang, M., Feng, F. & Tian, Z. (2020). Toward a ‘‘Green Revolution’’ for Soybean. Molecular Plant, 13(5), 688–697. doi: 10.1016/j.molp.2020.03.002.

Magné, C. & Larher, F. (1992) High sugar content interferes with colorimetric determination of amino acids and free proline. Analytical Biochemistry, 200(1), 115–118.

Mahajan S. & Tuteja N. (2005) Cold, salinity and drought stresses: na overview. Arch. Biochem. Biophys. 444(2), 139–158. doi: 10.1016/j.abb.2005.10.018.

Maldonade, I. R., Carvaho, P. G. B. & Ferreira, N. A. (2013) Protocolo para a Determinação de Açucares Totais em Hortaliças pelo Método de DNS. Comunicado Técnico: EMBRAPA, 85, 1-4.

McDermitt, D. K. (1990). Sources of Error in the Estimation of Stomatal Conductance and Transpiration from Porometer Data. HortScience, 25(12), 1538-1548. doi: 10.21273/hortsci.25.12.1538

Mousavi-Derazmahalleh, M., Bayer, P.E., Hane, J.K., Babu, V., Nguyen, H.T., Nelson, M.N., Erskine, W., Varshney, R.K., Papa, R. & Edwards, D. (2018) Adapting legume crops to climate change using genomic approaches. Plant Cell Environ.. 42(1), 6–19. https://doi.org/10.1111/pce.13203

Peixoto, H. P. P., Cambraia, J., Sant’ana, R., Mosquim, P. R. & Moreira, A. M. (1999). Aluminium effects on lipid peroxidation and the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11(3), 137-143.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Available in: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Access on: 18 Agust 2021.

Pompelli, M. P., França, S. C., Tigre, R. C., Oliveira, M. T., Sacilot, M. & Pereira, E. C. (2013). Spectrophotometric determinations of chloroplastidic pigments in acetone, ethanol and dimethylsulphoxide. Revista Brasileira de Biociências, 11(1), 52-58.

Rhodes D. & Handa S. (1989). Amino acid metabolism in relation to osmotic adjustment in plant cells. In Cherry J. H. (ed) Environmental stress in plants, biochemical and physiological mechanisms. Ecological Sciences, 19, 41-62.

Röder, C., Mógor, A. F., Szilagyi-Zecchin, V. J., Gemin, L. G., & Mógor, G. (2018). Potato yield and metabolic changes by use of biofertilizer containing L-glutamic acid. Comunicata Scientiae, 9(2), 211-218. doi: 10.14295/CS.v9i2.2564

Saddhe, A. A., Manuka, R. & Suprasanna, P. (2020) Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiologia Plantarum,171(4), 739-755. https://doi.org/10.1111/ppl.13283.

Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. 2012, 217037. doi: 10.1155/2012/217037

Silva, T. R da., Costa, M. L. A. da, Farias, L. R. A., Santos, M. A. dos, Rocha, J. J. de L. & Silva, J. V. (2021) Fatores abióticos no crescimento e florescimento das plantas. Research, Society and Development 10(4). doi: http://dx.doi.org/10.33448/rsd-v10i4.13817

Taiz, L.; Zeiger, E., Moller I. M. & Murphy, A. (2017) Fisiologia e desenvolvimento vegetal. 6. ed. Porto Alegre: Artmed, p. 888

Talbi, S., Romero-Puertas, M. C., Hernández, A., Terrón, L., Ferchichi, A. & Sandalio, L. M. (2015). Drought tolerance in a saharian plant Oudneya africana: role of antioxidant defences. Environmental and Experimental Botany, 111, 114–126. doi: 10.1016/j.envexpbot.2014.11.004

Teisseire, H. & Guy, V. (2000). Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant science, 153, 65-72.

Teixeira, W.F., Soares, L.H., Fagan, E.B., Mello, S.C., Reichardt, K. & Dourado-Neto, D. (2020). Amino acids as stress reducers in soybean plant growth under different water-deficit conditions. Journal of Plant Growth Regulation, 39, 905–919. https://doi.org/10.1007/s00344-019-10032-z

Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17– 22. https://doi.org/10.1038/nclimate2067

Winters, A. L., Lloyd, J. D., Jones, R. & Merry, R. J. (2002) Evaluation of a rapid method for estimating free amino acids in silages. Animal feed science and technology, 99, 177-187.

Xu, Z., Ma, J., Lei, P., Wang, Q., Feng, X. & Xu, H. (2020). Poly-γ-glutamic acid induces system tolerance to drought stress by promoting abscisic acid accumulation in Brassica napus L. Scientific Reports, 10(252). doi: 10.1038/s41598-019-57190-4

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5(6), 649–654. doi: 10.4161/psb.5.6.11398

Zhang, F., Guo, J. K., Yang, Y. L., He, W. L. & Zhang, L. X. (2004). Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiologiae Plantarum, 26, 345–352.

Zhang, L., Yang X., Gao D., Wang L., Li J., Zhanbo Wei Z. & Shi Y. (2017). Effects of poly-γglutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Scientific Reports, 7, 1-13. https://doi.org/10.1038/s41598-017-06248-2

Zhong, C., Cao, X., Bai, Z., Zhang, J., Zhu, L., Huang, J. & Jin, Q. (2018). Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 125, 52–62. doi: 10.1016/j.plaphy.2018.01.024.

Descargas

Publicado

22/08/2021

Cómo citar

MARQUES, H. M. C.; CORDEIRO, E. C. . N.; AMATUSSI, J. de O.; LARA, G. B. de; MÓGOR, G.; NEDILHA, L. C. B. M.; MÓGOR, Átila F. Mitigación de los efectos de la restricción hídrica en soya con biofertilizante: alteraciones metabólicas y de conductancia estomática . Research, Society and Development, [S. l.], v. 10, n. 11, p. e11101119377, 2021. DOI: 10.33448/rsd-v10i11.19377. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/19377. Acesso em: 19 may. 2024.

Número

Sección

Ciencias Agrarias y Biológicas