Biopolymers in the conservation of rizobacteria cells in alternative culture media

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27490

Keywords:

Inoculant; Microrganism; Preservantive.

Abstract

The inoculants are formulated with microorganisms of beneficial action for plants in a simple and accessible composition. They need a quality carrier that guarantees the concentration of active cells, in addition to tolerating variations in temperature, humidity, aeration and storage time without presenting high levels of contaminants, making it necessary to use preservatives. Polymers such as carboxymethylcellulose (CMC) and xanthan gum (XG) have been used for the manufacture of inoculants related to their ability to limit heat transfer, and to their rheological properties, which is the measure of the viscosity and flow strain. Thus, the objective of this work was to evaluate the efficiency of these biopolymers in the preservation of Bradyrhizobium elkanii, Bradyrhizobium diazoefficiens and Azospirillum sp. in alternative culture media with 7, 15, 30 45, 60, 90, 120, 150, 180 and 210 days at 5 °C. The inoculants were evaluated at 210 days, checking the pH and counting CFU mL-1 from the plating using the Spread Plate technique. It was concluded that the use of biopolymers was efficient in the conservation and viability of microorganism cells during the storage period, being the culture medium MS2 that obtained the best results in UFC mL-1, obtaining at 210 days 3.0 x108 CFU mL-1 with use of CMC e 1.4 x108 CFU mL-1 with XG for B. elkanii, 1.3 x107 CFU mL-1 with CMC, and 6.0 x106 CFU mL-1 with XG for B. diazoefficiens, 8.5 x108 CFU mL-1 with XG for Azospirillum sp.

Author Biographies

Manuella Costa Souza, Universidade Federal do Tocantins

Eng. Bioprocesso e Biotecnologia / Microbiologia

Celso Afonso Lima, Universidade Federal do Tocantins

Agronomia; Microbiologia

Dalilla Moreira de Oliveira Moura, Universidade Federal do Tocantins

Agronomia; Microbiologia

Silmara Moraes de Sousa, Universidade Federal do Tocantins

Agronomia; Microbiologia

Ana Licia Leão Ferreira, Universidade Federal do Tocantins

Agronomia; Microbiologia

References

Abbas, A. A., Planchon, S., Jobin, M. & Schmitt, P. (2014). A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis. J. Microbiol. Methods., 105 (1), 54-58. doi: 10.1016/j.mimet.2014.07.006

Alexandre G, Greer S. E. & Zhulin, I. B. (2000). Energy taxis is the dominant behavior in Azospirillum brasilense. J. Bacteriol., 182 (1), 6042-6048. doi: 10.1128/jb.182.21.6042-6048.2000

Argal, M. S., Rawat, A. K., Aher, S. B. & Rajput, P. S. (2015). Bioefficacy and shelf life of Rhizobium leguminosarum loaded on different carriers. Appl. Biol. Res., 17 (2), 1-7. doi: 10.5958/0974-4517.2015.00017.8

Barreto, M. C. S. (2008). Inovação tecnológica baseada na produção de biopolímero com viabilidade para inoculanterizobiano. Recife (PE): Universidade Federal de Pernambuco.

Bashan, Y., Bashan, L. E., Prabhu, S. R. & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant soil, 378, 1-33. doi: 10.1007/s11104-013-1956-x

Bashan, Y. & De-Bashan, L. E. (2015). Inoculant Preparation and Formulations for Azospirillum spp. In: Cassán F, Okon Y, Creus C, ed. Handbook for Azospirillum. 1st ed. Switzerland: Springer. 469-485.

Castro, J. R. P. & Araujo, S. (2018). Evolução tecnológica da indústria de inoculantes. http://bibliotecadigital.fgv.br/ojs/index.php/agroanalysis/issue/view/4303

Contreras-Ângulo, J. R., Mata, T. M., Cuellar-Bermudez, S. P., Caetano, N. S., Chandra, R. & Garcia-Perez, J. S. (2019). Symbiotic co-culture of Scenedesmus sp. and Azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability, 11 (3), 707. doi: 10.3390/su11030707

Denardin, N. D. & Freire, J. R. J. (2000). Assessment of polymers for the formulation of legume inoculants. World J. Microbiol. Biotechnol., 16 (3), 215-217. doi: 10.1023/A:1008914223467

Fachinelli R. (2018). Influência da inoculação com Bradyrhizobium e Azospirillum na cultura da soja. Universidade Federal da Grande Dourados.

Fernandes Júnior, P. I., Rohr, T. G., Oliveira, P. J. D., Xavier, G. R. & Rumjanek, N. G. (2009). Polymers as carriers for rhizobial inoculant formulations. Pesquisa Agropecuária Brasileira, 44 (9), 1184-1190. doi: 10.1590/S0100-204X2009000900017

García-Fraile, P., Menéndez, E. & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng., 2 (3), 183–205. doi: 10.3934/bioeng.2015.3.183

Lima, A. A., Fernandes Júnior, P. I., Passos, S. R., Paulo, F. S., Nosoline, S. M. & Faria, S. M. (2012). Diversidade e capacidade simbiótica de rizóbios isolados de nódulos de Mucuna-Cinza e Mucuna-Anã. Rev. Bras. Cienc. Solo, 36 (2), 337-348. doi: 10.1590/S0100-06832012000200003

Mapa. (2011). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 13, de 24 de março de 2011. Diário Oficial da União 25 mar 2011; Seção 1.

Mohamed, S. S., Hassan, M. A. & Abdelgani, M. E. (2019). The shelf life of Rhizobial liquid inoculants amended with diferente polymeric additives. Aust. J. Basic & Appl. Sci., 13 (11), 28-36. doi: 10.22587/ajbas.2019.13.11.4

Moncada, A., Miceli, A. & Vetrano, F. (2021). Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Sci. Hortic., 275 (1), 109733. doi: 10.1016/j.scienta.2020.109733

Oliveira, L. A. & Magalhães HP. (1999). Quantitative evaluation of acidity tolerance of root nodule bacteria. Rev. Microbiol., 30(1), 203-208. doi: 10.1590/S0001-37141999000300004

Perez-Galdonaf, R. & Kahn, M. L. (1994). Effects of organic acids and low pH on Rhizobium meliloti 104A14. Microbiol., 140 (5), 1231-1235.

Prescott, L. M., Harley, J. P. & Klein, D. A. (2002). Microbiology: Food and Industrial Microbiology. Boston: McGraw-Hill, 2002.

Ramongolalaina, C. (2020). Dual-luciferase assay and siRNA silencing for nodD1 to study the competitiveness of Bradyrhizobium diazoefficiens USDA110 in soybean nodulation. Microbiol Res., 237 (1), 126488. doi: 10.1016/j.micres.2020.126488

Rohr, T. G. (2007). Estudo reológico da mistura carboximetilcelulose/amido e sua utilização como veículo de inoculação bacteriano. Seropédica (RJ): Universidade Federal Rural do Rio de Janeiro.

Silva, C. R. R., Junior, M. A. L., Figueiredo, M. V.B., Stamford, N. P. & Alves, G. (2013). Feasibility of rhizobia conservation by liquid conditioners. Rev Ciênc Agron., 44 (4), 661-668.

Tittabutr, P., Payakapong, W., Teaumroong, N., Singleton, P. W. & Boonkerd, N. (2007). Growth, survival and field Performance of Bradyrhizobial liquid inoculant formulations with polymeric additives. Sci. Asia., 33 (1), 69-77. doi: 10.2306/scienceasia1513-1874.2007.33.069

Silva, M. F., Oliveira, P. J., Xavier, G. R., Rumjanek, N.G. & Reis, V. M. (2009). Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesquisa Agropecuária Brasileira, 44 (1), 1437-1443. doi: 10.1590/S0100-204X2009001100010

Sanz, T., Fernández, M. A., Salvador, A., Munoz, J. & Fiszman, S. M. (2005). Thermogelation properties of methylcellulose (MC) and their effecton a batter formula. Food Hydrocoll., 19 (1), 141-147. doi: 10.1016/j.foodhyd.2004.04.023

Reis, V. M. & Alves, G. C. (2015). Inoculantes contendo bactérias fixadoras de nitrogênio para aplicação na cultura do milho. In: Kuhn, O. J. et al, editores. Ciências Agrárias: Tecnologias e Perspectivas. Marechal Cândido Rondon: Unioeste. p. 82-97.

Reetha, D., Kumaresan, G. & John Milton, D. (2014). Studies to improve the shelf life of Azospirillum lipoferum immobilized in alginate beads. Int. J. Recent Sci. Res., 5 (12), 2178-2182.

Romero-Perdomo, F., Camelo-Rusinque, M., Criollo-Campos, P. & Bonilla-Buitrago, R. Efecto de la temperatura y el pH en la producción de biomasa de Azospirillum brasilense C16 aislada de pasto guinea. Pastos y Forrajes, 38 (3), 171-175.

Schuh, A. C. (2005). Biopolímeros como suporte para inoculantes. Porto Alegre (RS): Universidade Federal do Rio Grande do Sul.

Somasegaran, P. & Hoben, H. J. (1994). Handbook for rhizobia: methods in legume-Rhizobium technology. New York: Springer Science & Business Media.

Souza, E. B., Mariano, R. L. R., Felix, K. C. S., Lima, N. B. & Silva, J. R. (2016). Preservação de bactérias fitopatogênicas In: Mariano, R. L. R. & Souza, E. B. Manual de Práticas em Fitobacteriologia. 3ª ed. Recife: EDUFRPE. p. 35-45.

Sousa, P. M. (2011). Otimização do processo de produção de células das estirpes de Bradyrhizobium INPA 3-11B e UFLA 3-84, inoculantes do feijão-caupi. Lavras (MG): Universidade Federal de Lavras.

Taylor, R. H., Allen, M. J. & Geldreich, E. E. (1993). Standard plate count: A comparison of pour plate and spread plate methods. J. Am. Water Works Assoc., 75 (1), 35-37. doi:10.1002/j.1551-8833.1983.tb05055.x

Tumelero, A. I. & Denardin, N. D. (2008). Uso de polímeros em formulações para preservação de Pectobacterium atrosepticum e Ralstonia solanacearum. Summa phytopathol., 34 (1), 58-61. doi: 10.1590/S0100-54052008000100011

Voss, G. B. (2013). Produção de Bacillus subtilis em biorreator airlift e sua aplicação no controle de nematoide de galhas do tomateiro. Florianópolis (SC): Universidade Federal de Santa Catarina.

Woiciechowski, A. L, Carvalho, J. C., Spier, M. R., Habu, S., Yamaguishi, C. T., & Ghiggi, V. (2013). Emprego de resíduos agroindustriais em bioprocessos alimentares. In: Pastore, G. M., Bicas, J. L., Junior, M. R. M. ed. Biotecnologia de alimentos. São Paulo: Atheneu. p. 143-172.

Published

20/03/2022

How to Cite

SOUZA, M. C. .; LIMA, C. A. .; MOURA, D. M. de O. .; SOUSA, S. M. de .; FERREIRA, A. L. L. .; CHAGAS JUNIOR, A. F. Biopolymers in the conservation of rizobacteria cells in alternative culture media. Research, Society and Development, [S. l.], v. 11, n. 4, p. e35911427490, 2022. DOI: 10.33448/rsd-v11i4.27490. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/27490. Acesso em: 27 apr. 2024.

Issue

Section

Agrarian and Biological Sciences