Las preparaciones de Tribulus terrestris afectan los perfiles químicos de HPLC y las actividades inhibidoras de antioxidantes, lipoxigenasa y α-glucosidasa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i17.38751

Palabras clave:

Zygophyllaceae; Extractos de plantas; Contenido fenólico total; HPLC.

Resumen

El fruto de Tribulus terrestris ha sido utilizado como medicina tradicional y popular para la prevención y tratamiento de diversas enfermedades, entre ellas la disfunción sexual, la aterosclerosis y la hipertensión. El objetivo de este estudio fue evaluar las actividades inhibidoras de antioxidantes, lipoxigenasas y α-glucosidasas de un extracto etanólico de T. terrestris brasileño y sus fracciones divididas secuencialmente en n-hexano, diclorometano, acetato de etilo y n-butanol. Las capacidades antioxidantes se determinaron mediante DPPH y ABTS eliminando radicales libres, quelando iones metálicos, reduciendo el poder y la actividad antioxidante total utilizando fosfomolibdeno. Se realizaron análisis de huellas dactilares por Cromatografía líquida de alta resolución - detector de matriz de diodos (HPLC-DAD) y cuantificación de compuestos fenólicos totales en las muestras. La fracción de diclorometano mostró el perfil químico HPLC-DAD más complejo. Las fracciones de acetato de etilo y butanol revelaron la mejor recuperación de compuestos fenólicos y flavonoides de T. terrestris. En cuanto a la actividad antioxidante, la fracción de acetato de etilo mostró mejor capacidad de captación de radicales DPPH, ABTS e hidroxilo, poder reductor, capacidad antioxidante total (TAC) y actividad inhibitoria de la α-glucosidasa que las demás fracciones. Estos resultados se correlacionaron estrechamente con los niveles de compuestos fenólicos y flavonoides. La fracción de hexano mostró el mejor poder quelante de metales y actividad inhibidora de la lipoxigenasa. El potencial antidiabético y antiinflamatorio de la T. terrestris brasileña depende de cómo se prepare.

Citas

Aazza, S., Lyoussi, B., & Miguel, M. G. (2011). Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 16(9), 7672-7690.

Abdali-Mashhadi, A.-R., Direkvand-Moghadam, F., jalali, M., Albobaji, M., Direkvand-Moghadam, A., & Delpisheh, A. (2016). The measurement of the quercetin of different parts of Tribulus terrestris by HPLC. Future Natural Products, 2(1), 21-26.

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants, 4(2), 394-409.

Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152.

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.

Asadmobini, A., Bakhtiari, M., Khaleghi, S., Esmaeili, F., & Mostafaei, A. (2017). The effect of Tribulus terrestris extract on motility and viability of human sperms after cryopreservation. Cryobiology, 75, 154-159.

Asikin, Y., Takahashi, M., Mizu, M., Takara, K., Oku, H., & Wada, K. (2016). DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses. Journal of the Science of Food and Agriculture, 96(4), 1209-1215.

Basaiyye, S. S., Naoghare, P. K., Kanojiya, S., Bafana, A., Arrigo, P., Krishnamurthi, K., & Sivanesan, S. (2018). Molecular mechanism of apoptosis induction in Jurkat E6-1 cells by Tribulus terrestris alkaloids extract. Journal of Traditional and Complementary Medicine, 8(3), 410-419.

Borran, M., Minaiyan, M., Zolfaghari, B., & Mahzouni, P. (2017). Protective effect of Tribulus terrestris fruit extract on cerulein-induced acute pancreatitis in mice. Avicenna Journal of Phytomedicine (AJP), 7(3), 250-260.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.

Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of food and drug analysis, 10(3), 3.

Choi, C.-I., Eom, H. J., & Kim, K. H. (2016). Antioxidant and α-glucosidase inhibitory phenolic constituents of Lactuca indica L. Russ. J. Bioorganic Chem. , 42(3), 310-315.

Dakshayini, P., & Mahaboob Basha, P. (2018). Tribulus terrestris fruit extract improves antioxidant defense in female reproductive tract: A comprehensive study in diabetic rats. J. Innov. Pharm. Biol. Sci., 5(2), 101-107.

De Combarieu, E., Fuzzati, N., Lovati, M., & Mercalli, E. (2003). Furostanol saponins from Tribulus terrestris. Fitoterapia, 74(6), 583-591.

Dinchev, D., Janda, B., Evstatieva, L., Oleszek, W., Aslani, M. R., & Kostova, I. (2008). Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry, 69(1), 176-186.

Dobrian, A. D., Morris, M. A., Taylor-Fishwick, D. A., Holman, T. R., Imai, Y., Mirmira, R. G., & Nadler, J. L. (2019). Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacology & Therapeutics, 195, 100-110.

Domingueti, C. P., Dusse, L. M. S. A., Carvalho, M. d. G., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and its Complications, 30(4), 738-745.

Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774.

Dwivedi, D., & Sengar, N. (2018). Investigation of phytochemical constituents from Tribulus terrestris roots, leaves and fruits. Journal of Chemistry and Chemical Sciences, 8(1), 55-58.

Egnell, M., Fassier, P., Lécuyer, L., Gonzalez, R., Zelek, L., Vasson, M.-P., Hercberg, S., Latino-Martel, P., Galan, P., Druesne-Pecollo, N., Deschasaux, M., & Touvier, M. (2017). Antioxidant intake from diet and supplements and risk of digestive cancers in middle-aged adults: results from the prospective nutrinet-santé cohort. British Journal of Nutrition, 118(7), 541-549.

El-Shaibany, A., Molham, A.-H., Al-Tahami, B., & Al-Massarani, S. (2015). Anti-hyperglycaemic activity of Tribulus terrestris L aerial part extract in glucose-loaded normal rabbits. Trop. J. Pharm. Res., 14(12), 2263-2268.

El‐Guendouz, S., Aazza, S., Lyoussi, B., Antunes, M. D., Faleiro, M. L., & Miguel, M. G. (2016). Anti‐acetylcholinesterase, antidiabetic, anti‐inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci., 51(8), 1762-1773.

Ercan, P., & El, S. N. (2016). Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205, 163-169.

Ernawati, T., Radji, M., Hanafi, M., Mun’im, A., & Yanuar, A. (2017). Cinnamic acid derivatives as α-glucosidase inhibitor agents [cinnamic acid derivative; α-glucosidase inhibitor; antidiabetic; synthesis; natural products]. Indones. J. Chem., 17(1), 10.

Frum, Y., & Viljoen, A. M. (2006). In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases. Skin Pharmacol. Physiol., 19(6), 329-335.

Gardner, H. W. (1995). Biological roles and biochemistry of the lipoxygenase pathway. HortScience, 30(2), 197-205.

Ghanbari, A., Moradi, M., Raoofi, A., Falahi, M., & Seydi, S. (2016). Tribulus terrestris hydroalcoholic extract administration effects on reproductive parameters and serum level of glucose in diabetic male rats. International Journal of Morphology, 34(2).

Hammoda, H. M., Ghazy, N. M., Harraz, F. M., Radwan, M. M., ElSohly, M. A., & Abdallah, I. I. (2013). Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92, 153-159.

Hong, S. S., Choi, Y.-H., Jeong, W., Kwon, J. G., Kim, J. K., Seo, C., Ahn, E.-K., Lee, H. H., Ko, H.-J., Seo, D.-W., & Oh, J. S. (2013). Two new furostanol glycosides from the fruits of Tribulus terrestris. Tetrahedron Lett., 54(30), 3967-3970.

Ivanova, A., Lazarova, I., Mechkarova, P., & Tchorbanov, B. (2010). HPLC method for screening of steroidal saponins and rutin as biologically active compounds in Tribulus Terrestris L. Biotechnol. Biotechnol. Equip., 24(sup1), 129-133.

Kang, S. Y., Jung, H. W., Nam, J. H., Kim, W. K., Kang, J. S., Kim, Y. H., Cho, C. W., Cho, C. W., Park, Y. K., & Bae, H. S. (2017). Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone-induced atopic dermatitis through regulation of calcium channels, orai-1 and TRPV3, and mast cell activation. Evid. Based Complementary Altern. Med., 2017, 8312946.

Keshtmand, Z., Ghanbari, A., Khazaei, M., & Rabzia, A. (2015). Protective effect of Tribulus terrestris hydroalcoholic extract against cisplatin-induced apoptosis on testis in mice. Int. J. Morphol., 33(1).

Khairwal, V., & Kumar, M. (2013). Lead acetate induced oxidative stress and its possible reversal by Tribulus terrestris root extract in testes of Swiss albino mice. J. Environ. Sci. Toxicol. Food Technol., 6(3), 79-85.

Khatri, S., & Chhillar, A. K. (2015). Evaluation of in vitro free radical scavenging activity of Tribulus terrestris. Int. J. Basic Appl. Biol.

Kim, H. S., Lee, J. W., Jang, H., Le, T. P. L., Kim, J. G., Lee, M. S., Hong, J. T., Lee, M. K., & Hwang, B. Y. (2018). Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res., 41(2), 192-195.

Kostova, I., Dinchev, D., Rentsch, G. H., Dimitrov, V., & Ivanova, A. (2002). Two new sulfated furostanol saponins from Tribulus terrestris. Z. Naturforsch. C. J. Biosci., 57(1-2), 33-38.

Kumari, M., Kumar, P., & Singh, P. (2015). Safety evaluation of Tribulus terrestris on the male reproductive health of laboratory mouse. Int. J. Pharm. Phytopharm. Research, 4(5), 281-287.

Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. Int. J. Pharm. , 58(3), 237-240.

Lamba, H., Bhargava, C., Thakur, M., & Bhargava, S. (2011). α-glucosidase and aldose reductase inhibitory activity in vitro and anti-diabetic activity in vivo of Tribulus terrestris L. (Dunal). Int. J. Pharm. Pharm., 3, 270–272.

Lee, H. H., Ahn, E. K., Hong, S. S., & Oh, J. S. (2017). Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol. Med. Rep., 16(4), 4421-4428.

Lokhande, K., Kulkarni, C., Shinkar, M., Jadhav, S., & Salunkhe, S. (2014). Evaluation of antioxidant potential of Indian wild leafy vegetable Tribulus terrestris. Int. J. Adv. Pharm. Biol. Chem., 3, 2277-4688.

Nebieridze, V. G., Skhirtladze, A. V., Kemertelidze, E. P., & Ganzera, M. (2018). Megastigmane glycosides from leaves of Tribulus terrestris. Chem. Nat. Compd., 54(1), 63-65.

Nelson, M. J., & Seitz, S. P. (1994). The structure and function of lipoxygenase. Curr. Opin. Struct. Biol., 4(6), 878-884.

Oliveira, N. N. P. M., Félix, M. A. R., Pereira, T. C. S., Rocha, L. G. P., Miranda, J. R., Zangeronimo, M. G., Pinto, J. E. B. P., Bertolucci, S. K. V., & Sousa, R. V. d. (2015). Sperm quality and testicular histomorphometry of wistar rats supplemented with extract and fractions of fruit of Tribulus terrestris L. Braz. Arch. Biol. Technol., 58, 891-897.

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.

Pappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019). Diabesity and antidiabetic drugs. Molecular Aspects of Medicine, 66, 3-12.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.

Rajendar, B., Bharavi, K., Rao, G., Kishore, P., Kumar, P. R., Kumar, C. S., & Patel, T. P. (2011). Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage. Indian journal of pharmacology, 43(5), 568.

Rajendrabhai, V. D. (2017). Detection of phytochemical and pharmacological properties of crude extracts of Tribulus terrestris collected from tribal regions of Baglan (MS), India. Int J Pharmacognosy Phytochem Res, 9(4), 508-511.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.

Samani, N. B., Jokar, A., Soveid, M., Heydari, M., & Mosavat, S. H. (2016). Efficacy of the hydroalcoholic extract of Tribulus terrestris on the serum glucose and lipid Profile of women with diabetes mellitus: a double-blind randomized placebo-controlled clinical trial. Journal of Evidence-Based Complementary & Alternative Medicine, 21(4), NP91-NP97.

Sannigrahi, S., Mazuder, U. K., Pal, D. K., Parida, S., & Jain, S. (2010). Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian journal of pharmaceutical research: IJPR, 9(1), 75.

Sarma, A. D., Mallick, A. R., & Ghosh, A. (2010). Free radicals and their role in different clinical conditions: an overview. International Journal of Pharma Sciences and Research, 1(3), 185-192.

Semerdjieva, I. B., & Zheljazkov, V. D. (2019). Chemical constituents, biological properties, and uses of Tribulus terrestris: a review. Natural Product Communications, 14(8), 1934578X19868394.

Shishovska, M., Arsova-Sarafinovska, Z., & Memeti, S. (2015). A simple method for determination of protodioscin in Tribulus terrestris L. and pharmaceuticals by high-performance liquid chromatography using diode-array detection. J. Chem. Eng. Res. Updates, 2, 12-21.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144-158.

Song, Y. H., Kim, D. W., Curtis-Long, M. J., Park, C., Son, M., Kim, J. Y., Yuk, H. J., Lee, K. W., & Park, K. H. (2016). Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem., 114, 201-208.

Wang, B.-J., Lien, Y.-H., & Yu, Z.-R. (2004). Supercritical fluid extractive fractionation – study of the antioxidant activities of propolis. Food Chemistry, 86(2), 237-243.

Wu, T.-S., Shi, L.-S., & Kuo, S.-C. (1999). Alkaloids and other constituents from Tribulus terrestris. Phytochemistry, 50(8), 1411-1415.

Zheleva-Dimitrova, D. Z., Obreshkova, D., & Nedialkov, P. T. (2012). Antioxidant activity of Tribulus terrestris - a natural product in infertility therapy.

Zheng, W., Wang, F., Zhao, Y., Sun, X., Kang, L., Fan, Z., Qiao, L., Yan, R., Liu, S., & Ma, B. (2017). Rapid characterization of constituents in Tribulus terrestris from different habitats by UHPLC/Q-TOF MS. J. Am. Soc. Mass Spectrom., 28(11), 2302-2318.

Zhu, W., Du, Y., Meng, H., Dong, Y., & Li, L. (2017). A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J., 11(1), 60.

Publicado

19/12/2022

Cómo citar

OLIVEIRA, N. N. P. M. .; PEREIRA, A. C. .; AAZZA, S. .; GERMANO, C. M. .; ASSIS, R. M. A. de .; MENDONÇA, S. C. .; CARVALHO, A. A. de .; PINTO, J. E. B. P. .; BERTOLUCCI, S. K. V. . Las preparaciones de Tribulus terrestris afectan los perfiles químicos de HPLC y las actividades inhibidoras de antioxidantes, lipoxigenasa y α-glucosidasa. Research, Society and Development, [S. l.], v. 11, n. 17, p. e17111738751, 2022. DOI: 10.33448/rsd-v11i17.38751. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/38751. Acesso em: 19 may. 2024.

Número

Sección

Ciencias Agrarias y Biológicas