Factores asociados a la resistencia antimicrobiana: dura realidad a enfrentar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i17.38848

Palabras clave:

Resistencia antimicrobiana; Salud planetaria; Seleccion natural; Una salud.

Resumen

Las infecciones microbianas, desde los albores de la humanidad, se describen como los principales problemas que enfrentan las poblaciones. Ante muchos de ellos, varias civilizaciones sufrieron sin tener, al menos, conocimiento sobre lo que les afectaba. Además, se observa que estas pérdidas derivadas de enfermedades infecciosas no solo afligieron a los humanos, sino que también representaron una carga para las comunidades animales y el medio ambiente en su conjunto. Sin embargo, después de mucho tiempo de estudio y desarrollo en el campo médico, se desarrollaron fármacos antimicrobianos, que revolucionaron las técnicas hasta ahora conocidas para combatir estos diversos patógenos. Por lo tanto, muchos de estos medicamentos comenzaron a ser prescritos de manera indiscriminada para combatir o prevenir ciertas enfermedades, lo que llevó a la aparición de la Resistencia a los Antimicrobianos (RAM), hecho que generó intensas discusiones en todo el mundo. Al tomar nota de esto, buscamos, a través de esto, profundizar en el conocimiento sobre todo el proceso biológico intrínseco a este mecanismo de selección natural de ciertos organismos agresores. Por lo tanto, el presente estudio tuvo como objetivo desarrollar una red de conocimiento que interconecta los factores asociados con la resistencia a los antimicrobianos con un mejor conocimiento de los antimicrobianos, sus efectos y límites de uso. Por tanto, para que los antibacterianos sigan siendo efectivos y ejerzan su función en la salud humana, animal y ambiental, es importante adoptar medidas de control sobre la prescripción de determinados compuestos, con el fin de evitar posibles adaptaciones y resistencias de seres indeseables.

Citas

Aidara-Kane, A., Angulo, F. J., Conly, J., Minato, Y., Silbergeld, E. K., McEwen, S. A., Collignon, P. J., Balkhy, H., Collignon, P., Friedman, C., Hollis, A., Kariuki, S., Kwak, H. S., McEwen, S., Moulin, G., Ngandjio, A., Rollin, B., Rossi, F., & Wallinga, D. (2018). World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrobial Resistance and Infection Control, 7(1). https://doi.org/10.1186/S13756-017-0294-9

Amarasiri, M., Sano, D. & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Reviews in Evironmental Science and Technology, (50), 4135-4146. https://doi.org/10.1080/10643389.2019.1692611

Antunes, P., Novais, C., & Peixe, L. (2020). Food-to-Humans Bacterial Transmission. Microbiology Spectrum, 8(1). https://doi.org/10.1128/MICROBIOLSPEC.MTBP-0019-2016

Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T. H., Rasool, M. H., Shahid, A., Xueshan, X., & Baloch, Z. (2021). Antibiotic Resistance: One Health One World Outlook. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.771510

Becker, K. (2021). Methicillin-Resistant Staphylococci and Macrococci at the Interface of Human and Animal Health. Toxins, 13(1). https://doi.org/10.3390/TOXINS13010061

Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H. & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, (169), 483-493. https://doi.org/10.1016/j.envres.2018.11.040

Buchy, P., Ascioglu, S., Buisson, Y., Datta, S., Nissen, M., Tambyah, P. A., & Vong, S. (2020). Impact of vaccines on antimicrobial resistance. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 90, 188–196. https://doi.org/10.1016/J.IJID.2019.10.005

Collignon, P. J., & McEwen, S. A. (2019). One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Tropical Medicine and Infectious Disease, 4(1). https://doi.org/10.3390/TROPICALMED4010022

Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One Health, emerging infectious diseases and wildlife: two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725). https://doi.org/10.1098/RSTB.2016.0167

Garegnani, L. I., Rosón-Rodríguez, P., Garrote, V. L., Vera, V. L., Clara, L. O., Vidal, F. A., Acosta, G. A., Antinucci, D. V., Murujosa, A., Aliperti, V. I., Ferloni, A., Gadano, A. C. & Figar, S. B. (2022). Resistencia antimicrobiana y producción porcina de cría intensiva. Rev. Hosp. Ital. B. Aires, (42), 2.

Gazal, L. E. S., Brito, K. C. T., Kobayashi, R. K. T., Nakazato, G., Cavalli, L. S., Otutumi, L. K. & Brito, B. G. (2020). Antimicrobials and resistant bacteria in global fish farming and the possible risk for public health. Arquivos do Instituto Biológico, (87), 1-11. https://doi.org/10.1590/1808-1657000362019

Gebreyes, W. A., Jackwood, D., de Oliveira, C. J. B., Lee, C.-W., Hoet, A. E., & Thakur, S. (2020). Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases. Microbiology Spectrum, 8(2). https://doi.org/10.1128/MICROBIOLSPEC.AME-0011-2019

Hernando-Amado, S., Coque, T. M., Baquero, F., & Martínez, J. L. (2019). Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology 2019 4:9, 4(9), 1432–1442. https://doi.org/10.1038/s41564-019-0503-9

Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Medical Sciences (Basel, Switzerland), 9(1), 14. https://doi.org/10.3390/MEDSCI9010014

Kobs, V. C., Valdez, R., Medeiros, F., Fernandes, P. P., Deglmann, R. C., Gern, R. M. M. & França, P. H. C. (2020). Mcr-1-carrying Enterobacteriaceae isolated from companion animals in Brazil. Brazilian Journal of Veterinary Researsh, (9), 40, 690-695. https://doi.org/10.1590/1678-5150-PVB-6635

Larsen, J., Raisen, C. L., Ba, X., Sadgrove, N. J., Padilla-González, G. F., Simmonds, M. S. J., Loncaric, I., Kerschner, H., Apfalter, P., Hartl, R., Deplano, A., Vandendriessche, S., Černá Bolfíková, B., Hulva, P., Arendrup, M. C., Hare, R. K., Barnadas, C., Stegger, M., Sieber, R. N., Skov, S. R., Petersen, A., Angen, Ø., Rasmussen, S. L., Espinosa-Gongora, C., Aarestrup, F. M., Lindholm, L. J., Nykäsenoja, S. M., Laurent, F., Becker, K., Walther, B., Kehrenberg, C., Cuny, C., Layer, F., Werner, G., Witte, W., Stamm, I., Moroni, P., Jørgensen, H. J., Lencastre, H., Cercenado, E., García-Garrote, F,. Börjesson, S,. Hæggman, S., Perreten, V., Teale, C. J., Waller, A. S., Pichon, B., Curran, M. D., Ellington, M. J., Welch, J. J., Peacock, S. J., Seilly, D. J., Morgan, F. J. E., Parkhill, J., Hadjirin, N. F., Lindsay, J. A., Holden, M. T. J., Edwards, G. F., Foster, G., Paterson, G. K., Didelot, X., Holmes, M. A., Harrison, E. M., & Larsen, A. R. (2022). Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 602(7895), 135–141. https://doi.org/10.1038/S41586-021-04265-W

Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules (Basel, Switzerland), 23(4). https://doi.org/10.3390/MOLECULES23040795

Mateus, K. A., Santos, M. R., Lima, J., Bona, L. F., Sants, M. S. T., Korb, A., Kirinus, J. K. & Kessler, J. D. (2022). Resistência antimicrobiana de isolados de Escherichia coli de carcaças de ovinos resfriadas por spray durante o resfriamento. Rev. Colom. Cienc. Pecua, (34), 1. https://doi.org/10.17533/udea.rccp.v34n2a04

McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017

Micoli, F., Bagnoli, F., Rappuoli, R., & Serruto, D. (2021). The role of vaccines in combatting antimicrobial resistance. Nature Reviews. Microbiology, 19(5), 287–302. https://doi.org/10.1038/S41579-020-00506-3

Nang, S. C., Li, J., & Velkov, T. (2019). The rise and spread of mcr plasmid-mediated polymyxin resistance. Critical Reviews in Microbiology, 45(2), 131–161. https://doi.org/10.1080/1040841X.2018.1492902

Pagani, L., Pieri, A., Aschbacher, R., Fasani, G., Mariella, J., Brusetti, L., Pagani, E., & Sartelli, M. (2020). Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antibiotics (Basel, Switzerland), 9(8), 1–13. https://doi.org/10.3390/ANTIBIOTICS9080473

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/BMJ.N71

Pearson, M. & Chandler, C. (2019). Knowing antimicrobial resistance in practice: a multi-country qualitative study with human and animal healthcare professionals. Global Health Action, (12). https://doi.org/10.1080/16549716.2019.1599560

Qiao, M., Ying, G. G., Singer, A. C., & Zhu, Y. G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172. https://doi.org/10.1016/J.ENVINT.2017.10.016

Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98(4), 1791–1804. https://doi.org/10.3382/PS/PEY539

Santos, C. M. D. C., Pimenta, C. A. D. M., & Nobre, M. R. C. (2007). The PICO strategy for the research question construction and evidence search. Revista Latino-Americana de Enfermagem, 15(3), 508–511. https://doi.org/10.1590/S0104-11692007000300023

Sens-Junior, H., Trindade, W. A., Oliveira, A., F., Zaniolo, M. M., Serenini, G. F., Araujo-Ceranto, J. B., Gonçalves, D. D. & Germano, R. M. (2018). Bacterial resistance in bats from the Phyllostomidae family and its relationship with unique health. Pesquisa Veterinária Brasileira, (6), 1207-1216. https://doi.org/10.1590/1678-5150-PVB-5185

Ström, G., Boqvist, S., Albihn, A., Fernström, L. L., Djurfeldt, A. A., Sokerya, S., Sothyra, T. & Magnusson, U. (2018). Antimicrobials in small-scale urban pig farming in a lower middle-income country – arbitrary use and high resistance levels. Antimicrob Resist Infect Control, (7) 35. https://doi.org/10.1186/s13756-018-0328-y

Torres, C., Alonso, C. A., Ruiz-Ripa, L., León-Sampedro, R., Del Campo, R., & Coque, T. M. (2018). Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiology Spectrum, 6(4). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0032-2018

Zainab, S. M., Junaid, M., Xu, N. & Malik, R. N. (2020). Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Research. (187). https://doi.org/10.1016/j.watres.2020.116455

Publicado

23/12/2022

Cómo citar

SILVA, A. A.; FREITAS, F. G.; TOLENTINO, V. P. Factores asociados a la resistencia antimicrobiana: dura realidad a enfrentar. Research, Society and Development, [S. l.], v. 11, n. 17, p. e146111738848, 2022. DOI: 10.33448/rsd-v11i17.38848. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/38848. Acesso em: 19 may. 2024.

Número

Sección

Ciencias de la salud