Efecto protector del extracto amazónico de Himatanthus sucuuba sobre Drosophila melanogaster expuesta a Paraquat

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i17.38931

Palabras clave:

Drosophila melanogaster; Neuroprotección; Antioxidantes; Plantas de la Amazonia.

Resumen

La selva amazónica es un importante manantial de conocimientos científicos, por eso diversos grupos de investigación buscan comprender la acción de los compuestos amazónicos sobre las enfermedades. Entre la extensa flora, el Himatanthus sucuuba tiene una variedad de efectos terapéuticos y, en este caso, se utilizó por primera vez en la neuroprotección inducida por el Paraquat (PQ) en Drosophila melanogaster. En este estudio, se realizaron ensayos fitoquímicos con el extracto hidroalcohólico de H. sucuuba mostrando cualitativamente las clases de metabolitos secundarios y cuantitativamente los fenoles totales (43,33 mg EAG/g Extracto-1), los flavonoides totales (44,09 mg EAG/G Extracto-1) y la actividad antioxidante por DPPH y ABTS. Por otra parte, la exposición de adultos de D. melanogaster (cepa salvaje, Canton Special) frente al PQ por 15 días, causó un alto estrés oxidativo, como muestran los niveles elevados de proteínas carboniladas, el lactato y actividades de acetilcolinesterasa y por el citrato sintasa. Además, una dieta suplementada con el extracto de H. sucuuba (0,1 mg/mL) por 15 días evitó los daños por el estrés oxidativo provocado por el PQ. Nuestro estudio es demostrar el efecto protector del extracto de H. sucuuba en D. melanogaster sometida al PQ. De acuerdo nuestros resultados, sugerimos que los extractos de la cáscara de H. sucuuba podrán prevenir o minimizar las enfermedades del ser humano causadas por el estrés oxidativo.

Citas

Abeysinghe, A. A. D. T., Deshapriya, R. D. U. S., & Udawatte, C. (2020). Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life sciences, 256, 117996. https://doi.org/10.1016/j.lfs.2020.117996

Aguirre-Hernández, E., Martínez, A. L., González-Trujano, M. E., Moreno, J., Vibrans, H., & Soto-Hernández, M. (2007). Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. Journal of ethnopharmacology, 109(1), 140–145. https://doi.org/10.1016/j.jep.2006.07.017

Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell metabolism, 14(6), 724–738. https://doi.org/10.1016/j.cmet.2011.08.016

Bhadone, B. S., Patil, M. P., Maheshwari, V. L., & Patil, R. H. (2018). Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytotherapy Research: PTR, 32(7), 1181–1210. https://doi.org/10.1002/ptr.6066

Bradford, M. M. A Rapid and Sensitive Method for a Quantitation of Microgram Quantities of Proteins Utilizing the Principle of Protein – Dye Binding. Analytical Biochemistry, 72 (1976) 248-254. https://doi.org/ 10.1006/ abio.197 6.9999

Cao, C., Li, X., Qin, L., Luo, J., Zhang, M., Ou, Z., & Wang, K. (2018). High Selenium Yeast mitigates aluminum-induced cerebral inflammation by increasing oxidative stress and blocking NO production. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 31(5), 835–843. https://doi.org/10.1007/s10534-018-0128-0

Carmo, M. K. B., Figueiredo, M. O. V., Souza, J. M.; Souza, A. O., Lima, C. A. C. (2021). Neuroprotective action of aspirin on Paraquat intoxication in on Drosophila. Research, Society and Development, 10(4): e30710414179. https://doi.org/10.33448/rsd-v10i4.14179

Castillo-Bautista, C. M., Torres-Tapia, L. W., Rangel-Méndez, J. A., Peraza-Sánchez, S. R., Cortés, D., Velasco, I., & Moo-Puc, R. E. (2019). Neuroprotective effect of Mayan medicinal plant extracts against glutamate-induced toxicity. Journal of natural medicines, 73(3), 672–678. https://doi.org/10.1007/s11418-019-01284-w

Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis: Vol. 10: Iss. 3, Article 3. https://doi.org/10.38212/2224-6614.2748

Costa, S. L., Silva, V. D., Dos Santos Souza, C., Santos, C. C., Paris, I., Muñoz, P., & Segura-Aguilar, J. (2016). Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity research, 30(1), 41–52. https://doi.org/10.1007/s12640-016-9600-1

Cui, X., Lin, Q., & Liang, Y. (2020). Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Frontiers in aging neuroscience, 12, 209. https://doi.org/10.3389/fnagi.2020.00209

Da Silva, M. L., Stehmann, J. R., Serafim, M. S. M., Vale, V. V., Gontijo, D. C., Brandão, G. C., Kroon, E. G., & de Oliveira, A. B. (2021). Himatanthus bracteatus stem extracts present anti-flavivirus activity while an isolated sesquiterpene glucoside present only anti-Zika virus activity in vitro. Natural product research, 35(18), 3161–3165. https://doi.org/10.1080/14786419.2019.1690487

Dawson, T. M., Golde, T. E., & Lagier-Tourenne, C. (2018). Animal models of neurodegenerative diseases. Nature neuroscience, 21(10), 1370–1379. https://doi.org/10.1038/s41593-018-0236-8

Depetris-Chauvin, A., Galagovsky, D., Chevalier, C. (2017). Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci Rep 7, 14230. https://doi.org/10.1038/s41598-017-14589-1

Ellman, G. L., Courtney, K. D., Andres JR, V., & Featherstone, R. M. A new and rapid colorimetric deter- mination of acethylcholinesterase activity. Biochemical Pharmacology, 7:88–95, 1961. https://doi.org/10.1016/0006-2952(61)90145-9

Ezeonu, S. & Ejikeme, C. (2016). Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. 2016. 9. https://doi.org/10.1155/2016/5601327.

Frohnert, B. I., & Bernlohr, D. A. (2013). Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Advances in nutrition (Bethesda, Md.), 4(2), 157–163. https://doi.org/10.3945/an.112.003319

Gasiorowski, K., Lamer-Zarawska, E., Leszek, J., Parvathaneni, K., Yendluri, B. B., Błach-Olszewska, Z., & Aliev, G. (2011). Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration?. CNS & neurological disorders drug targets, 10(2), 184–191. https://doi.org/10.2174/187152711794480384

Goyal, M., Nagori, B. P., & Sasmal, D. (2009). Sedative and anticonvulsant effects of an alcoholic extract of Capparis decidua. Journal of natural medicines, 63(4), 375–379. https://doi.org/10.1007/s11418-009-0339-3

Guan, X., Middlebrooks, B. W., Alexander, S., & Wasserman, S. A. (2006). Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16794–16799. https://doi.org/10.1073/pnas.0607616103

Harris, R. A., Tindale, L., Lone, A., Singh, O., Macauley, S. L., Stanley, M., Holtzman, D. M., Bartha, R., & Cumming, R. C. (2016). Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis. The Journal of Neuroscience, 36(6), 1871–1878. https://doi.org/10.1523/JNEUROSCI.3131-15.2016

Hattesohl, M., Feistel, B., Sievers, H., Lehnfeld, R., Hegger, M., & Winterhoff, H. (2008). Extracts of Valeriana officinalis L. s.l. show anxiolytic and antidepressant effects but neither sedative nor myorelaxant properties. Phytomedicine. International Journal of Phytotherapy and Phytopharmacology, 15(1-2), 2–15. https://doi.org/10.1016/j.phymed.2007.11.027

Herrera-Calderón, O., Calero-Armijos, L. L., Cardona-G, W., Herrera-R, A., Moreno, G., Algarni, M. A., Alqarni, M., & El-Saber Batiha, G. (2021). Phytochemical Screening of Himatanthus sucuuba (Spruce) Woodson (Apocynaceae) Latex, In Vitro Cytotoxicity and Incision Wound Repair in Mice. Plants (Basel, Switzerland), 10(10), 2197. https://doi.org/10.3390/plants10102197

Hosamani, R., & Muralidhara (2013). Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Archives of Insect Biochemistry and Physiology, 83(1), 25–40. https://doi.org/10.1002/arch.21094

Jones, R. (2009). An acetylcholine receptor keeps muscles in balance. PLoS Biol., 7(12): e1000268. https://doi.org/10.1371/journal.pbio.1000268

Kim, D. S., Kim, J. Y., & Han, Y. S. (2007). Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult. Journal of alternative and omplementary Medicine, 13(3), 333–340. https://doi.org/10.1089/acm.2006.6107

Kumar, D., & Kumar, S. (2020). Neuroprotective constituents of Actaea acuminata (Wall. ex Royle) H. Hara roots. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 76(9-10), 357–365. https://doi.org/10.1515/znc-2020-0209

Kumara P., Sunil K., Arun Kumar B (2018) Determination of DPPH Free Radical Scavenging Activity by RP-HPLC, Rapid Sensitive Method for the Screening of Berry Fruit Juice Freeze Dried Extract. Nat Prod Chem Res 6: 341. https://doi.org/10.4172/2329-6836.1000341

Li, R., Tao, M., Wu, T., Zhuo, Z., Xu, T., Pan, S., & Xu, X. (2021). A promising strategy for investigating the anti-aging effect of natural compounds: a case study of caffeoylquinic acids. Food & function, 12(18), 8583–8593. https://doi.org/10.1039/d1fo01383a

Matos, F. J. A. Introdução à fitoquímica experimental. 3. ed. Edições UFC, Fortaleza, 2009.

Montero, I. F., Chagas, E. A., Melo Filho, A. A., Saraiva, S. A. M., Santos, R. C., Chagas, P. C., Duarte, E. D. R. S. (2018). Evaluation of total phenolic compounds and antioxidant activity in Amazon fruit. Chemical Engineering Transactions, 64: 649-654, 2018. https://doi.org/10.3303/CET1864109

Mukherjee, P. K., Kumar, V., Mal, M., & Houghton, P. J. (2007). Acetylcholinesterase inhibitors from plants. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(4), 289–300. https://doi.org/10.1016/j.phymed.2007.02.002

Nitrini, R., & Ferri, C. P. (2020). Burden of dementia in Brazil. Arquivos de Neuro-psiquiatria, 78(12), 755–756. https://doi.org/10.1590/0004-282X20200191

Ojha, R., Gautam, T. P., & Chaudhary, N. K. (2020). The Physicochemical Analysis and Phytochemical Screening of Some Medicinal Plants of Letang Municipality of Morang District, Nepal. BIBECHANA, 17:67-74. https://doi.org/10.3126/bibechana.v17i0.25236

Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S., & Ogunlana, E. O. (2015). Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia, 74, 1274-1281.

Perry, E. K., Haroutunian, V., Davis, K. L., Levy, R., Lantos, P., Eagger, S., Honavar, M., Dean, A., Griffiths, M., & McKeith, I. G. (1994). Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer's disease. Neuroreport, 5(7), 747–749. https://doi.org/10.1097/00001756-199403000-00002

Pérez-González, M. Z., & Jiménez-Arellanes, M. A. (2021). Biotechnological processes to obtain bioactive secondary metabolites from some Mexican medicinal plants. Applied Microbiology and Biotechnology, 105(16-17), 6257–6274. https://doi.org/10.1007/s00253-021-11471-z

Phulara, S. C., Pandey, S., Jha, A., Chauhan, P. S., Gupta, P., & Shukla, V. (2021). Hemiterpene compound, 3,3-dimethylallyl alcohol promotes longevity and neuroprotection in Caenorhabditis elegans. GeroScience, 43(2), 791–807. https://doi.org/10.1007/s11357-020-00241-w

Pradhan, L. K., Sahoo, P. K., Aparna, S., Sargam, M., Biswal, A. K., Polai, O., Chauhan, N. R., & Das, S. K. (2021). Suppression of bisphenol A-induced oxidative stress by taurine promotes neuroprotection and restores altered neurobehavioral response in zebrafish (Danio rerio). Environmental toxicology, 36(11), 2342–2353. https://doi.org/10.1002/tox.23348

Prince, M., Guerchet, M., & Prina, M (2015). The epidemiology and impact of dementia - current state and future trends. Geneva: WHO; 2015. (Thematic briefs for the First WHO Ministerial Conference on Global Action Against Dementia, 16-17 March 2015). Available from: https://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdf?ua=1

Rajapakse, T., & Davenport, W. J. (2019). Phytomedicines in the Treatment of Migraine. CNS drugs, 33(5), 399–415. https://doi.org/10.1007/s40263-018-0597-2

Reznick, A. Z.; Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233:357–363, https://doi.org/10.1016/s0076- 6879(94)33041-7

Romanova, E. V., & Sweedler, J. V. (2018). Animal Model Systems in Neuroscience. ACS chemical neuroscience, 9(8), 1869–1870. https://doi.org/10.1021/acschemneuro.8b00380

Santos, P. C. M. (2022). Propriedades antioxidante, antimicrobiana e toxicidade do extrato da casca do alho (Allium sativum L.). 61 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Universidade Federal do Ceará, Fortaleza, 2022.

Santos, M. F. G., Mamede, R. V. S., Rufino, M. S. M., Brito, E. S., Alves, R. E. (2015). Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants, 4(3): 591-602. https://doi.org/10.3390/antiox4030591

Scialò, F., Sriram, A., Stefanatos, R., Spriggs, R. V., Loh, S. H. Y., Martins, L. M., & Sanz, A. (2020). Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster. Redox biology, 32, 101450. https://doi.org/10.1016/j.redox.2020.101450

Sharma, O.P. and Bhat, T.K. (2009) DPPH Antioxidant Assay Revisited. Food Chemistry, 113,1202-1205. http://dx.doi.org/10.1016/j.foodchem.2008.08.008

Srere, P.A. (1969). Citrate synthase. Method Enzymol. 13, 3–11. https://doi.org/10.1016/0076-6879(69)13005-0

Silva, N. C., Poetini, M. R., Bianchini, M. C., Almeida, F. P., Dahle, M. M. M., Araujo, S. M., Bortolotto, V. C., Musachio, E. A. S., Ramborger, B. P., Novo, D. R., Roehrs, R., Mesko, M. F., Prigol, M., & Puntel, R. L. (2021). Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. Environmental science and pollution research international, 28(14), 17519–17531. https://doi.org/10.1007/s11356-020-11848-z

Silva, R. M. F., Ribeiro, J. F. A., Freitas, M. C. C., Arruda, M. S. P., Nascimento, M. N., Barbosa, W. L. R., & Rolim Neto, P. (2013). Caracterização físico-química e análises por espectrofotometria ecromatografia de Peperomia pelucida L. (H.B.K.). Revista Brasileira de Plantas Medicinais, 15(4): 717-726. https://doi.org/10.1590/S1516-05722013000500012

Simon, A. F., Chou, M. T., Salazar, E. D., Nicholson, T., Saini, N., Metchev, S., & Krantz, D. E. (2012). A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav. 11:243–252, https://doi.org/10.1111/j.1601-183X.2011.00740.x

Souza, O. A., Couto-Lima, C. A., Rosa Machado, M. C., Espreafico, E. M., Pinheiro Ramos, R. G., & Alberici, L. C. (2017). Protective action of Omega-3 on paraquat intoxication in Drosophila melanogaster. Journal of Toxicology and Environmental Health. Part A, 80(19-21), 1050–1063. https://doi.org/10.1080/15287394.2017.1357345

Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., & Angelini, C. (2012). Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols, 7(6), 1235–1246. https://doi.org/10.1038/nprot.2012.058

Tello, J. A., Williams, H. E., Eppler, R. M., Steinhilb, M. L., & Khanna, M. (2022). Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Frontiers in molecular neuroscience, 15, 883358. https://doi.org/10.3389/fnmol.2022.883358

Torres, P. B., Pires, J. S., Santos, D. Y. A. C., & Chow, F. (2017). Ensaio do potencial antioxidante de extratos de algas através do sequestro do ABTS•+ em microplaca. Instituto de Biociências, Universidade de São Paulo, 1-4.

Vargas, F. S.; Almeida, P. D. O.; Boleti, A. P. A.; Pereira, M. M.; Souza, T. P.; Vasconcellos, M. C.; Nunez, C. V.; Pohlit, A. M.; Lima, E. S. (2016). Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complementary and Alternative Medicine, 16(1):83. https://doi.org/10.1186/s12906-016-1061-9

Volkenhoff, A., Weiler, A., Letzel, M., Stehling, M., Klämbt, C., & Schirmeier, S. (2015). Glial Glycolysis Is Essential for Neuronal Survival in Drosophila. Cell metabolism, 22(3), 437–447. https://doi.org/10.1016/j.cmet.2015.07.006

Wimo, A., Winblad, B., & Jönsson, L. (2010). The worldwide societal costs of dementia: Estimates for 2009. Alzheimer's & dementia: The Journal of the Alzheimer's Association, 6(2), 98–103. https://doi.org/10.1016/j.jalz.2010.01.010

Wolfe, K., Wu, X. and Liu, R.H. (2003) Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51, 609-614. http://dx.doi.org/ 10.1021/jf020782a

Yagi, S., Mohammed, A. B. A., Tzanova, T., Schohn, H., Abdelgadir, H., Stefanucci, A., Mollica, A., & Zengin, G. (2020). Chemical profile, antiproliferative, antioxidant, and enzyme inhibition activities and docking studies of Cymbopogon schoenanthus (L.) Spreng. and Cymbopogon nervatus (Hochst.) Chiov. from Sudan. Journal of Food Biochemistry, 44(2), e13107. https://doi.org/10.1111/jfbc.13107

Yamaguchi, K. K. L.; Lamarão, C. V.; Aranha, E. S. P.; Souza, R. O. S.; Oliveira, P. D. A.; Vasconcellos, M. C.; Lima, E. S.; Veiga-Júnior, V. F. (2017). HPLC-DAD profile of phenolic compounds, cytotoxicity, antioxidant and anti-inflammatory activities of the Amazon fruit Caryocar villosum. Química Nova, 40(5): 483-490, https://doi.org/10.21577/0100-4042.20170028

Yamaguchi, K. K. L.; Souza, A. O. (2020). Antioxidant, Hypoglycemic and Neuroprotective activities of extracts from fruits native to the Amazon region: A review. Biotechnology Journal International, 24(6): 9-31. https://doi.org/10.9734/BJI/2020/v24i630119

Ziegler, A.B., Ménagé, C., Grégoire, S., Garcia, T., Ferveur, J. F. (2015). Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System. PLOS ONE 10(8): e0135353. https://doi.org/10.1371/journal.pone.0135353

Zengin, G., Sarikürkçü, C., Aktümsek, A., & Celylan, R. (2016). Antioxidant potencial and anhibition od key enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoternepe-rich essencial oil from Sideritis galatica Bornm. endemic to Turkey. Records of Natural Products. 10(2):125-206. https//doi.org/10.1111/jfbc.13107

Zhou, D. D., Luo, M., Shang, A., Moa, Q-Q., Li, B-Y., Gan, R-Y., & Li, H-B. (2021). Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid Med Cell Longev, 2021: 9932218. https://doi.org/10.1155/2021/9932218

Descargas

Publicado

23/12/2022

Cómo citar

SILVA, M. P. da .; LISBOA, D. R. .; SANTOS, S. F. .; ANDRADE, C. M. B. .; YAMAGUCHI, K. K. de L. .; CARVALHO, R. P. .; SOUZA, A. de O. . Efecto protector del extracto amazónico de Himatanthus sucuuba sobre Drosophila melanogaster expuesta a Paraquat. Research, Society and Development, [S. l.], v. 11, n. 17, p. e148111738931, 2022. DOI: 10.33448/rsd-v11i17.38931. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/38931. Acesso em: 19 may. 2024.

Número

Sección

Ciencias Agrarias y Biológicas