Eficacia de fuentes y dosis de silicio para el crecimiento, pigmentos fotosintéticos y contenido de cardenólido en Digitalis mariana Boiss subsp. Heywoodii in vitro

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i2.39719

Palabras clave:

Micropropagación; Plantas medicinales; Cardenólidos; Glucósidos cardiotónicos.

Resumen

Digitalis mariana (Plantaginaceae) se considera originaria del Oeste, Suroeste y Centro oeste de Europa. Es una especie de interés medicinal, dado principalmente por sus glucósidos cardiotónicos utilizados en el tratamiento de la insuficiencia cardiaca. Se pueden realizar modificaciones en el medio de cultivo para mejorar el cultivo in vitro. Se ha informado que el crecimiento y desarrollo de las plantas se ven afectados por la aplicación de silicio. Así, el objetivo fue evaluar el crecimiento, contenido total de cardenólidos y pigmentos fotosintéticos en D. mariana cultivada bajo diferentes fuentes y dosis de silicio en medio de cultivo. El material vegetal se estableció in vitro. Luego de este proceso se ensayaron tres fuentes de Silicio: Silicato de Potasio, Calcio y Sodio en concentraciones de 0, 0.5, 1.5, 4.5, 7.5, 10.5 mg L-1. A los 40 días se realizó la validación analítica y se evaluó el crecimiento, pigmentos fotosintéticos y cardenólidos totales. Las diferentes fuentes y concentraciones promovieron el crecimiento de brotes y raíces, aumentaron los niveles de clorofila a, clorofila b, carotenoides y cardenólidos. El uso de 0.5 mg L-1 de silicato de sodio promovió mayor biomasa foliar y seca total. El silicato de calcio y el silicato de potasio a una concentración de 4.5 mg L-1 promovieron mayores niveles de cardenólidos. El cultivo de D. mariana bajo fuentes de silicio a diferentes concentraciones es una técnica prometedora para optimizar la producción de plántulas y metabolitos secundarios.

Citas

Al-Mayahi, A. M. W. (2016). Effect of silicon (Si) application on Phoenix dactylifera L. growth under drought stress induced by polyethylene glycol (PEG) in vitro. American Journal of Plant Sciences, 7(13), 1711-1728.

Al-Snafi, A. (2017). Nutritional and therapeutic importance of Daucus carota - A review. IOSR Journal of Pharmacy, 7(2), 72-88.

Braga, F. T., Nunes, C. F., Favero, A. C., Pasqual, M., Carvalho, J. G. d., & Castro, E. M. d. (2009). Características anatômicas de mudas de morangueiro micropropagadas com diferentes fontes de silício. Pesquisa Agropecuária Brasileira, 44(2), 128-132.

Brasil. (2003). Agência Nacional de Vigilância Sanitária (ANVISA). R. E, nº 899 de 29 de maio de 2003 - Guia para validação de métodos qualitativos e bioanalíticos.

da Silva, D. P. C., de Oliveira, P. P. D., Herrera, R. C., Porto, J. M. P., dos Reis, M. V., & Paiva, R. (2020). Effectiveness of silicon sources for in vitro development of gerbera. Plant Cell, Tissue and Organ Culture (PCTOC), 141(1), 77-85.

da Silva, G. M., Mohamed, A., de Carvalho, A. A., Pinto, J. E. B. P., Braga, F. C., de Pádua, R. M., Kreis, W., & Bertolucci, S. K. V. (2022). Influence of the wavelength and intensity of LED lights and cytokinins on the growth rate and the concentration of total cardenolides in Digitalis mariana Boiss. ssp. heywoodii (P. Silva and M. Silva) Hinz cultivated in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 151(1), 93-105.

Ebaid, G. M. X., Faine, L. A., Diniz, Y. S., Rodrigues, H. G., Galhardi, C. M., Ribas, B. O., Fernandes, A. A. H., & Novelli, E. L. B. (2006). Effects of digitonin on hyperglycaemia and dyslipidemia induced by high-sucrose intake. Food and Chemical Toxicology, 44(2), 293-299.

Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637-1647.

Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor [https://doi.org/10.1111/j.1399-3054.2005.00481.x]. Physiologia Plantarum, 123(4), 459-466.

ICH. (1994). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. British journal of clinical pharmacology, 37(5), 401.

ICH. (1996). International conference on harmonisation. Validation of Analytical Procedures: Methodology. United States of America.

Jadhav, G., Ghanghav, S., & Singh, N. (2018). Digitalis purpurea: an overview of phytochemical and pharmacological profile. Int. J. Pharmacogn, 5, 563-570.

Khattab, S., El Sherif, F., AlDayel, M., Yap, Y.-K., Meligy, A., & Ibrahim, H. I. M. (2022). Silicon dioxide and Silver nanoparticles elicit antimicrobial secondary metabolites while enhancing growth and multiplication of Lavandula officinalis in-vitro plantlets. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1), 411-421.

Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., & Prathanturarug, S. (2010). Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 103(3), 333-342.

Lateef, S. Q., & Tangolar, S. (2021). Effect of different silicone sources and concentrations on in vitro micro propagation of 140 Ru grape rootstock. International Journal of Agriculture Environment and Food Sciences, 5(2), 221-228.

Lim, M., Lee, E., Sonali, J., Iyyakkannu, S., & Jeong, B. (2012). Effect of potassium silicate on growth and leaf epidermal characteristics of begonia and pansy grown in vitro. Korean Journal of Horticultural Science & Technology, 30(5), 579-585.

Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11-18.

Mali, M., Aery, & Naresh, C. (2008). Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata) [https://doi.org/10.1002/jpln.200700362]. Journal of Plant Nutrition and Soil Science, 171(6), 835-840.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.

Navarro, E., Alonso, P. J., Alonso, S. J., Trujillo, J., Pérez, C., Toro, M. V., & Ayuso, M. J. (2000). Cardiovascular activity of a methanolic extract of Digitalis purpurea spp. heywoodii. Journal of Ethnopharmacology, 71(3), 437-442.

Reed, B. M., Sarasan, V., Kane, M., Bunn, E., & Pence, V. C. (2011). Biodiversity conservation and conservation biotechnology tools. In Vitro Cellular & Developmental Biology - Plant, 47(1), 1-4.

Reis, É. S., Pinto, J. E. B. P., Rosado, L. D. S., & Corrêa, R. M. (2009). Teor e composição química do óleo essencial de Melissa officinalis L. in vitro sob influência do meio de cultura. Acta Scientiarum. Agronomy, 31(2), 331-335.

Roca-Pérez, L., Boluda, R., Gavidia, I., & Pérez-Bermúdez, P. (2004). Seasonal cardenolide production and Dop5βr gene expression in natural populations of Digitalis obscura. Phytochemistry, 65(13), 1869-1878.

Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163(8), 847-855.

Sahebi, M., Hanafi, M. M., Akmar, S. N. A., Rafii, M. Y., Azizi, P., Tengoua, F. F., Azwa, N. M. J., & Shabanimofrad, M. (2015). Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, 2015, 396010.

Sahebi, M., Hanafi, M. M., & Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology - Plant, 52(3), 226-232.

Santos, R. P., Da Cruz, A. C. F., Iarema, L., Kuki, K. N., & Otoni, W. C. (2015). Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Ceres, 55(4), 356-364.

Saqib, M., Zörb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35(7), 633-639.

Sharafzadeh, S., & Zare, M. (2011). Influence of growth regulators on growth and secondary metabolites of some medicinal plants from Lamiaceae family [Report]. Advances in Environmental Biology, 2296+.

Sivanesan, I., Song, J. Y., Hwang, S. J., & Jeong, B. R. (2011). Micropropagation of cotoneaster wilsonii Nakai — a rare endemic ornamental plant. Plant Cell, Tissue and Organ Culture (PCTOC), 105(1), 55-63.

Soares, J. D. R., Pasqual, M., Rodrigues, F. A., Villa, F., & Araujo, A. G. d. (2011). Silicon sources in the micropropagation of the Cattleya group orchid. Acta Scientiarum. Agronomy, 33(3), 503-507.

Srivastava, M., Eidelman, O., Zhang, J., Paweletz, C., Caohuy, H., Yang, Q., Jacobson, K. A., Heldman, E., Huang, W., Jozwik, C., Pollard, B. S., & Pollard, H. B. (2004). Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proceedings of the National Academy of Sciences, 101(20), 7693-7698.

Us-Camas, R., Rivera-Solís, G., Duarte-Aké, F., & De-la-Peña, C. (2014). In vitro culture: an epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture (PCTOC), 118(2), 187-201.

Verma, S. K., Das, A. K., Cingoz, G. S., & Gurel, E. (2016). In vitro culture of Digitalis L. (Foxglove) and the production of cardenolides: An up-to-date review. Industrial Crops and Products, 94, 20-51.

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313.

Youssef, M. A., El-Helw, M. R., Taghian, A. S., & El-Aref, H. M. (2010). Improvement of Psidium guajava L. using micropropagation. Acta Horticulturae(No.849), 223-230.

Zhuo, T.-S. (1995). The detection of the accumulation of silicon in Phalaenopsis (Orchidaceae). Annals of Botany, 75(6), 605-607.

Ziv, M. (2010). Silicon effects on growth acclimatization and stress tolerance of bioreactor cultured Ornithogalum dubium plants. Acta Horticulturae,(865), 29-35.

Publicado

20/01/2023

Cómo citar

MOURA, R. C. .; ASSIS, R. M. A. de .; ROCHA, J. P. M. .; LEITE, J. J. F. .; PEREIRA, F. D. .; SANTOS, J. P. dos .; BERTOLUCCI, S. K. V. .; PINTO, J. E. B. P. . Eficacia de fuentes y dosis de silicio para el crecimiento, pigmentos fotosintéticos y contenido de cardenólido en Digitalis mariana Boiss subsp. Heywoodii in vitro. Research, Society and Development, [S. l.], v. 12, n. 2, p. e5412239719, 2023. DOI: 10.33448/rsd-v12i2.39719. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/39719. Acesso em: 15 may. 2024.

Número

Sección

Ciencias Agrarias y Biológicas