Obtaining mullite from kaolin waste through thermal treatment in conventional oven

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20653

Keywords:

Kaolin; Reuse; Rietveld refinement; Sustainability.

Abstract

This work aimed to evaluate the capacity of mullite formation through heat treatment applied to kaolin residue, in which the influence of temperature on the formation of this phase was investigated. Kaolin and commercial kaolin residue samples were calcined at 1100 and 1200°C with heating rates of 2 and 30°C/min, for comparison purposes in obtaining the mullite phase, in conventional oven. Subsequently, the starting samples and the phases obtained were characterized by DRX, FTIR, SEM, EDX, TG/DTA and quantified by the Rietveld method. Results indicated that the raw materials are kaolin with similar structures, containing kaolinite as predominant clay mineral, followed by quartz. Thermal events obtained by TG/DTA evidenced mullite nucleation at approximately 903°C. The thermal treatment applied favored formation of crystalline phases: mullite (32 - 57%), followed by quartz (28 - 63%), an amorphous component rich in silica (11 - 18% of vitreous phase), and, as a minor phase, cristobalite (0.27 - 17%). The morphologies of samples are micro needles, with heterogeneous sizes and distribution. Kaolin tailings, compared to commercial kaolin, showed promising potential as a raw material for obtaining the mullite phase. Such a context entails economic and environmental gains for ceramic industry, since it can replace commercial kaolin in the composition of mass for white ceramics, as well as reducing sintering temperature due to the presence of fluxes such as quartz and feldspar.

References

Abubakar, M.; Muthuraja, A.; Rajak, D. K.; Ahmad, N.; Pruncu, C. I.; Lamberti, L.; Kumar, A. (2020). Influence Of Firing Temperature On The Physical, Thermal And Microstructural Properties Of Kankara Kaolin Clay: A Preliminary Investigation. Materials. 13(8), 1872.

Almeida, E.; Carreiro, M.; Rodrigues, A.; Ferreira, H.; Santana, L.; Menezes, R.; Neves, G. A. (2021). New Eco-Friendly Mass Formulation Based On Industrial Mining Residues For The Manufacture Of Ceramic Tiles. Ceramics International. 47(8), 11340-11348.

Barata, M.; Angélica, R. (2012). Caracterização Dos Resíduos Cauliníticos Das Indústrias De Mineração De Caulim Da Amazônia Como Matéria-Prima Para Produção De Pozolanas De Alta Reatividade. Cerâmica, 58, 36-42.

Boonphayak, P.; Khansumled, S.; Yatongchai, C. (2021). Synthesis Of Cao-SiO2 Catalyst From Lime Mud And Kaolin Residue For Biodiesel Production. Materials Letters, 283, 128759.

Brasileiro, M. I.; Oliveira, D.; Lira, H. L.; De Lima Santana, L. N.; Neves, G. A.; Novaes, A.; Sasak, J. M. (2006). Mullite Preparation From Kaolin Residue. In: Materials Science Forum, Trans Tech Publ, 625-630.

Buriti, B.; Buriti, J.; Silva, I.; Cartaxo, J.; Neves, G.; Ferreira, H. (2019). Characterization Of Clays From The State Of Paraíba, Brazil For Aesthetic And Medicinal Use. Cerâmica, 65, 78-84.

Cheraitia, A.; Redjimi, Z.; Bououdina, M. (2021). Novel Mullite‐Cordierite Ceramic Refractory Fabricated From Halloysite And Talc. International Journal Of Applied Ceramic Technology. 18(1), 70-80.

Farmer, V. (1998). Differing Effects Of Particle Size And Shape In The Infrared And Raman Spectra Of Kaolinite. Clay Minerals. 33(4), 601-604.

Fernandes, L.; Salomão, R. (2018). Preparation And Characterization Of Mullite-Alumina Structures Formed" In Situ" From Calcined Alumina And Different Grades Of Synthetic Amorphous Silica. Materials Research. 21.

Hadjadj, K.; Chihi, S. (2020) Rietveld Refinement Based Quantitative Phase Analysis (Qpa) Of Ouargla (Part Of Grand Erg Oriental In Algeria) Dunes Sand. Silicon. 1-9.

Hildebrando, E. A.; Angélica, R. S.; Neves, R. D. F.; Valenzuela-Diaz. (2012). Síntese de Zeólita do Tipo Faujasita A Partir de Um Rejeito De Caulim. Cerâmica. 58, 453-458.

Huang, Y.; Senos, A. R.; Rocha, J.; Baptista, J. (1997). Gel Formation In Mullite Precursors Obtained Via Tetraethylorthosilicate (Teos) Pre-Hydrolysis. Journal Of Materials Science: Materials In Electronics. 32(1), 105-110.

Ilić, S.; Babić, B.; Bjelajac, A.; Stoimenov, N.; Kljajević, L.; Pošarac–Marković, M.; Matović, B. (2020). Structural And Morphological Characterization Of Iron-Doped Sol-Gel Derived Mullite Powders. Ceramics International, 46(9), 13107-13113.

Jana, A.; Ray, D. (2020). Synthesis And Characterization Of Sol-Gel Derived Monophasic Mullite Powder. Cerâmica. 66, 307-313.

Klug, H. P.; Alexander, L. E. (1997). X-Ray Diffraction Procedures: For Polycrystalline And Amorphous Materials. ISBN 0471493694.

Li, Y.; Lu, J.; Zeng, Y.; Liu, Z.; Wang, C. (2018). Preparation And Characterization Of Mullite Powders From Coal Fly Ash By The Mullitization And Hydrothermal Processes. Materials Chemistry And Physics. 213, 518-524.

Lira, H. L.; De Oliveira Lima, R.; Oliveira Guimarães, I.; Araújo Neves, G.; Nóbrega Tavares, R.; Silveira Lira, D.; Rosas Neto, M.; Lira, B. S. (2017). Ceramic Membrane Made With Inorganic Residue. Trans Tech Publ. 60-85.

Liu, H.; Xiong, X.; Li, M.; Wang, Z.; Wang, X.; Ma, Y.; Yuan, L. (2020). Fabrication And Properties Of Mullite Thermal Insulation Materials With In-Situ Synthesized Mullite Hollow Whiskers. Ceramics International. 46(10), 14474-14480.

Luz, A. B. D.; Damasceno, E. C. (1993). Caulim: Um Mineral Industrial Importante. Série Tecnologia Mineral. CETEM/CNPq, Rio de Janeiro, RJ.

Martelli, M. C.; Mochiutti, E.; Lima, J. P. O.; Neves, R. D. F. (2021). Quantificação De Mullita Proveniente De Resíduos De Caulim Da Região Amazônica: Uso Do Método De Rietveld. Química Nova. 44, 402-409.

Medeiros, A. R. S.; De Farias Neto, S. R.; De Araújo Ferreira, D. D.; Romero, M. J. A.; Gonzaga, L. M. (2020). Análise Granulométrica e Drx Para Caracterização Do Rejeito De Caulim Da Região Do Seridó Da Paraíba Visando Uma Nova Rota De Beneficiamento. Brazilian Journal Of Development. 6(6), 33575-33588.

Monecke, T.; Köhler, S.; Kleeberg, R.; Herzig, P. M.; Gemmell, J. B. (2001). Quantitative Phase-Analysis By The Rietveld Method Using X-Ray Powder-Diffraction Data: Application To The Study Of Alteration Halos Associated With Volcanic-Rock-Hosted Massive Sulfide Deposits. The Canadian Mineralogist. 39(6), 1617-1633.

Oliveira, A. D.; Ferreira, I. M.; Jimenez, D. E. Q.; Neves, F. B.; Da Silva, L. S.; Da Costa, A. A. F.; Lima, E. T. L.; Pires, L. H. D.; Da Costa, C. E. F.; Da Rocha, G. N.; Do Nascimento, L. A. S. (2021). An Efficient Catalyst Prepared From Residual Kaolin For The Esterification Of Distillate From The Deodorization Of Palm Oil. Catalysts. 11(5).

Olphen, H. V. (1963). An Introduction To Clay Colloid Chemistry, For Clay Technologists, Geologists, And Soil Scientists.

Rekik, S. B.; Gassara, S.; Bouaziz, J.; Deratani, A.; Baklouti, S. (2017). Development And Characterization Of Porous Membranes Based On Kaolin/Chitosan Composite. Applied Clay Science. 143, 1-9.

Rietveld, H. (1967). Line Profiles Of Neutron Powder-Diffraction Peaks For Structure Refinement. Acta Crystallographica. 22(1), 151-152.

Romero, M.; Padilla, I.; Contreras, M.; López-Delgado, A. (2021). Mullite-Based Ceramics From Mining Waste: A Review. Minerals. 11(3).

Sadik, C.; Amrani, I.-E. E.; Albizane, A. (2014). Processing And Characterization Of Alumina–Mullite Ceramics. Journal Of Asian Ceramic Societies. 2(4), 310-316.

Sahraoui, T.; Belhouchet, H.; Heraiz, M.; Brihi, N.; Guermat, A. (2016). The Effects Of Mechanical Activation On The Sintering Of Mullite Produced From Kaolin And Aluminum Powder. Ceramics International. 42(10), 12185-12193.

Santana, L.; Gomes, J.; Neves, G.; Lira, H.; Menezes, R.; Segadães, A. (2014). Mullite Formation From Bentonites Containing Kaolinite: Effect Of Composition And Synthesis Parameters. Applied Clay Science. 87, 28-33.

Silva, A.; Luna, C.; Chaves, A.; Neves, G. (2018). Avaliação de Novos Depósitos de Argilas Provenientes da Região Sul Do Amapá Visando Aplicação Na Indústria Cerâmica. Cerâmica. 64, 69-78.

Silva, V. J. D.; Taveira, S. K.; Silva, K. R.; Neves, G. A.; Lira, H. L.; Santana, L. N. (2021). Refractory Ceramics Of Clay And Alumina Waste. Materials Research. 24.

Sousa, B.; Rego, J.; Brasil, D.; Martelli, M. (2020). Síntese E Caracterização de Zeólita Tipo Sodalita Obtida A Partir De Resíduo De Caulim. Cerâmica. 66, 404-412.

Souza Santos, P. (1989). Ciência e Tecnologia de Argilas. E. Blucher.

Spínola, D. C.; De Miranda, A.; Macedo, D. A.; Paskocimas, C. A.; Nascimento, R. M. J. J. O. M. R. (2019). Technology. Preparation Of Glass-Ceramic Materials Using Kaolin And Oil Well Drilling Wastes. 8(4), 3459-3465.

Uruena, G. D.; Ribeiro, K. C.; Prestes, E.; Pinheiro, L. A.; Carvalho, B. M. (2021). Extraction Of Cellulose Nanocrystal From Multilayer Packaging Residues Composed Of A Mixture Of Eucalyptus And Pine Fibers. Waste And Biomass Valorization. 12, 5763–5777.

Valášková, M.; Klika, Z.; Novosad, B.; Smetana, B. (2019). Crystallization And Quantification Of Crystalline And Non-Crystalline Phases In Kaolin-Based Cordierites. Materials. 12(19), 3104.

Van Der Marel, H.; Krohmer, P. (1969).Oh Stretching Vibrations In Kaolinite, And Related Minerals. Contributions To Mineralogy Petrology. 22(1), 73-82.

Worasith, N.; Goodman, B.; Neampan, J.; Jeyachoke, N.; Thiravetyan, P. (2011). Characterization Of Modified Kaolin From The Ranong Deposit Thailand By XRD, XRF, SEM, FTIR And EPR Techniques. Clay Minerals. 46(4), 539-559.

Xu, X.; Lao, X.; Wu, J.; Zhang, Y.; Xu, X.; Li, K. (2015). Microstructural Evolution, Phase Transformation, And Variations In Physical Properties Of Coal Series Kaolin Powder Compact During Firing. Applied Clay Science. 115, 76-86.

Yang, K. H.; Wu, J. H.; Hsi, C. S.; Lu, H. Y. (2011). Morphologically Textured Mullite In Sintered Tape‐Cast Kaolin. Journal Of The American Ceramic Society. 94(3), 938-944.

Zhou, H.; Qiao, X.; Yu, J. (2013). Influences Of Quartz And Muscovite On The Formation Of Mullite From Kaolinite. Applied Clay Science. 80, 176-181.

Published

21/09/2021

How to Cite

SILVA , A. L. da .; CHAVES , A. C. .; NEVES, G. de A. .; COSTA, A. C. F. de M. .; BRITO, D. F. de . Obtaining mullite from kaolin waste through thermal treatment in conventional oven. Research, Society and Development, [S. l.], v. 10, n. 12, p. e283101220653, 2021. DOI: 10.33448/rsd-v10i12.20653. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/20653. Acesso em: 28 apr. 2024.

Issue

Section

Engineerings