Desarrollo de biosensor electroquímico: análisis voltamperométrico de linfocitos e indicación de activación del sistema del complemento

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.30198

Palabras clave:

Linfocitos; Biosensor; Células de sangre.

Resumen

Este trabajo reporta el desarrollo de un biosensor electroquímico luego de la inmovilización de los linfocitos para detectar la reacción entre anticuerpos y antígenos HLA específicos presentes en las muestras de suero. Se utilizó un electrodo de oro casero limpio con características policristalinas voltamperométricas. Los linfocitos fueron inmovilizados y probados con suero humano positivo y negativo y complementos en el electrodo de oro. Los experimentos se realizaron en una celda con tres electrodos: de trabajo - oro, de referencia - Ag/AgCl/sat. KCl y auxiliar - platino. Los análisis voltamperométricos cíclicos de los linfocitos inmovilizados sobre la superficie de oro presentaron una corriente anódica igual a 1,78 μA a c.a. 0,50 V frente a Ag/AgCl/sat. KCl. Las respuestas electroquímicas del suero (positivo y negativo) y del complemento no muestran signos de oxidación o reducción en el rango de potencial utilizado. Los electrodos con células y suero positivo mostraron la señal de corriente amplificada en el potencial de oxidación de las células. El electrodo fue desarrollado para verificar la reacción del anticuerpo del antígeno, presentar muestras de células de linfocitos y suero humano. El electrodo fue cualitativamente eficiente en comparación con los métodos de análisis de citometría de flujo y citotoxicidad dependiente del complemento, pudiendo ser utilizado con ventajas operativas y económicas.

Biografía del autor/a

Ruan Sousa Bastos, Federal Institute of Education, Science and Technology of Maranhão; Research Group in Medicinal Chemistry and Biotechnology-QUIMEBIO

Graduado em Ciências Naturais/Química pela Universidade Federal do Maranhão - UFMA, Campus de Grajaú. Mestrando em Química Medicinal e Modelagem Molecular - UFPA. Participou do Programa Institucional de Bolsa de iniciação a Docência - PIBID e do Programa de Residência Pedagógica. Membro do Grupo de Pesquisa em Química Medicinal e Biotecnologia - QUIMEBIO e membro do Grupo de Pesquisa em Ciências Naturais e Biotecnologia - CIENATEC. Atua nas linhas de Biotecnologia e Química Quântica Computacional. E-mail: sonruanquimica@gmail.com

Citas

Abbas, A. K., Lichtman, A. H., & Pillai, S. (2007). Effector mechanisms of cell-mediated immunity. Cellular and molecular immunology. Saunders Elsevier 6th edition Philadelphia, PA, 303-320.

Ahmed, M., Carrascosa, L. G., Sina, A. A. I., Zarate, E. M., Korbie, D., Ru, K. L., ... & Trau, M. (2017). Detection of aberrant protein phosphorylation in cancer using direct gold-protein affinity interactions. Biosensors and Bioelectronics, 91, 8-14.

Alheim, M., Paul, P. K., Hauzenberger, D. M., & Wikström, A. C. (2015). Improved flow cytometry based cytotoxicity and binding assay for clinical antibody HLA crossmatching. Human Immunology, 76(11), 849-857.

Bard, A. J., & Faulkner, L. R. (2001). Chapter 5. ELECTROCHEMICAL METHODS, Fundamentals and Applications, second ed., John Wiley & Sons, Inc, New York.

Biomarkers Definitions Working Group, Atkinson Jr, A. J., Colburn, W. A., DeGruttola, V. G., DeMets, D. L., Downing, G. J., ... & Zeger, S. L. (2001). Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology & therapeutics, 69(3), 89-95.

Bona, C., Anteunis, A., Robineaux, R., & Halpern, B. (1972). Structure of the lymphocyte membrane. III. Chemical nature of the guinea-pig lymphocyte membrane macromolecules reacting with heterologous als. Clinical and Experimental Immunology, 12(3), 377.

Brotton, S. J., & Kaiser, R. I. (2013). Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers. Review of Scientific Instruments, 84(5), 055114.

Brunetti, A., Pomilla, F. R., Marcì, G., Garcia-Lopez, E. I., Fontananova, E., Palmisano, L., & Barbieri, G. (2019). CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Applied Catalysis B: Environmental, 255, 117779.

Cai, X., Xing, X., Cai, J., Chen, Q., Wu, S., & Huang, F. (2010). Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron, 41(3), 257-262.

Cheuquepán, W., Martínez-Olivares, J., Rodes, A., & Orts, J. M. (2018). Squaric acid adsorption and oxidation at gold and platinum electrodes. Journal of Electroanalytical Chemistry, 819, 178-186.

Demir, E., Yeğit, O., Erol, A., Akgül, S. U., Çalışkan, B., Bayraktar, A., ... & Sever, M. S. (2017, April). Relevance of Flow Cytometric Auto-Crossmatch to the Post-transplant Course of Kidney Transplant Recipients. In Transplantation Proceedings (Vol. 49, No. 3, pp. 477-480). Elsevier.

Han, L., Yan, B., Zhang, L., Wu, M., Wang, J., Huang, J., ... & Zeng, H. (2018). Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, 37-45.

Hasanzadeh, M., Baghban, H. N., Shadjou, N., & Mokhtarzadeh, A. (2018). Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle. International journal of biological macromolecules, 107, 1348-1363.

Kim, A. R., Park, T. J., Kim, M. S., Kim, I. H., Kim, K. S., Chung, K. H., & Ko, S. (2017). Functional fusion proteins and prevention of electrode fouling for a sensitive electrochemical immunosensor. Analytica chimica acta, 967, 70-77.

Koo, K. M., Carrascosa, L. G., Shiddiky, M. J., & Trau, M. (2016). Poly (A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Analytical chemistry, 88(4), 2000-2005.

LAL, S. S. (2010). Hematological changes in Tinca tinca after exposure to lethal and sublethal doses of Mercury, Cadmium and Lead.

Lo, D. J., Kaplan, B., & Kirk, A. D. (2014). Biomarkers for kidney transplant rejection. Nature Reviews Nephrology, 10(4), 215-225.

Matysik, J., Schulten, E., Alia, A., Gast, P., Raap, J., Lugtenburg, J., ... & Groot, H. J. D. (2001). Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings.

McDonald, G. D., & Storrie-Lombardi, M. C. (2010). Biochemical constraints in a protobiotic earth devoid of basic amino acids: The “BAA (-) world”. Astrobiology, 10(10), 989-1000.

Moulton, S. E., Barisci, J. N., Bath, A., Stella, R., & Wallace, G. G. (2003). Investigation of protein adsorption and electrochemical behavior at a gold electrode. Journal of colloid and interface science, 261(2), 312-319.

Moura-Melo, S., Miranda-Castro, R., De-los-Santos-Álvarez, N., Miranda-Ordieres, A. J., dos Santos Junior, J. R., da Silva Fonseca, R. A., & Lobo-Castañón, M. J. (2017). A quantitative PCR-electrochemical genosensor test for the screening of biotech crops. Sensors, 17(4), 881.

Nankivell, B. J., & Alexander, S. I. (2010). Rejection of the kidney allograft. New England Journal of Medicine, 363(15), 1451-1462.

Park, J., Lin, H. Y., Assaker, J. P., Jeong, S., Huang, C. H., Kurdi, A., ... & Azzi, J. R. (2017). Integrated kidney exosome analysis for the detection of kidney transplant rejection. ACS nano, 11(11), 11041-11046.

PI, P. R. T. (1969). Significance or the positive crossmatch test in kidnetransplantation. New Engl J Med, 280, 735-9.

Picascia, A., Infante, T., & Napoli, C. (2012). Luminex and antibody detection in kidney transplantation. Clinical and experimental nephrology, 16(3), 373-381.

Roelen, D. L., Doxiadis, I. I., & Claas, F. H. (2012). Detection and clinical relevance of donor specific HLA antibodies: a matter of debate. Transplant International, 25(6), 604-610.

Sina, A. A. I., Howell, S., Carrascosa, L. G., Rauf, S., Shiddiky, M. J., & Trau, M. (2014). eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA–gold affinity interactions. Chemical communications, 50(86), 13153-13156.

Solez, K., Colvin, R. B., Racusen, L. C., Haas, M., Sis, B., Mengel, M., ... & Valente, M. (2008). Banff 07 classification of renal allograft pathology: updates and future directions. American journal of transplantation, 8(4), 753-760.

Srinivas, T. R., & Meier-Kriesche, H. U. (2008). Minimizing immunosuppression, an alternative approach to reducing side effects: objectives and interim result. Clinical Journal of the American Society of Nephrology, 3(Supplement 2), S101-S116.

Steven, J. T., Golovko, V. B., Johannessen, B., & Marshall, A. T. (2016). Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry. Electrochimica Acta, 187, 593-604.

Terasaki, P. I., & McCLELLAND, J. D. (1964). Microdroplet assay of human serum cytotoxins. Nature, 204(4962), 998-1000.

Trišović, N. P., Božić, B. D., Lović, J. D., Vitnik, V. D., Vitnik, Ž. J., Petrović, S. D., & Ivić, M. L. A. (2015). Еlеctrochemical characterization of phenytoin and its derivatives on bare gold electrode. Electrochimica Acta, 161, 378-387.

Wang, G., Zhou, Y., Huang, F. J., Tang, H. D., Xu, X. H., Liu, J. J., ... & Jia, W. (2014). Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. Journal of Proteome Research, 13(5), 2649-2658.

Wanunu, M., Vaskevich, A., & Rubinstein, I. (2004). Widely-applicable gold substrate for the study of ultrathin overlayers. Journal of the American Chemical Society, 126(17), 5569-5576.

Xu, X., Makaraviciute, A., Pettersson, J., Zhang, S. L., Nyholm, L., & Zhang, Z. (2019). Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry. Sensors and Actuators B: Chemical, 283, 146-153.

Yadav, S., Carrascosa, L. G., Sina, A. A., Shiddiky, M. J., Hill, M. M., & Trau, M. (2016). Electrochemical detection of protein glycosylation using lectin and protein–gold affinity interactions. Analyst, 141(8), 2356-2361.

Descargas

Publicado

05/06/2022

Cómo citar

OLIVEIRA, T. P.; MELO, S. M.; MONTE, S. J. H. do; BASTOS, R. S.; PASSOS, I. N. G.; SILVA, A. S.; SANTOS JÚNIOR, J. R. dos. Desarrollo de biosensor electroquímico: análisis voltamperométrico de linfocitos e indicación de activación del sistema del complemento. Research, Society and Development, [S. l.], v. 11, n. 7, p. e59611730198, 2022. DOI: 10.33448/rsd-v11i7.30198. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/30198. Acesso em: 18 may. 2024.

Número

Sección

Ciencias Exactas y de la Tierra