Redução de NOx com NH3 sobre catalisadores de Mn/TiO2: uma revisão sistemática da literatura

Autores

DOI:

https://doi.org/10.33448/rsd-v11i13.35737

Palavras-chave:

SCR; NOx; NH3; Mn/TiO2.

Resumo

Este artigo de revisão sistemática de literatura traz um panorama de resultados sobre a eficiência de catalisadores suportados de Mn/TiO2 contendo metais de transição para uso na redução catalítica seletiva (SCR) de NOx com NH3. A metodologia sistemática de literatura tipo Methodi Ordinatio foi aplicada para ranquear os melhores artigos sobre o tema, sendo priorizado na classificação o fator de impacto da revista, o ano de publicação e no número de citações do artigo científico. O ordenamento dos dados mostrou valores de eficiências de redução de NOx de até 97% para catalisadores sem dopagem e até 100% para materiais dopados com níquel, o qual entre os metais de dopagem relacionados apresentou a melhor eficiência na redução de NOx com NH3. Em geral, são observados na literatura muitos trabalhos relacionados a essa temática e verifica-se no contexto sistemático que materiais a base de óxido de manganês e óxido de titânio dopados com metais de transição ou terra raras são extremamente promissores e eficientes na SCR de NOx com NH3.

Referências

ANTT. (2018). Idade Média dos Veículos. Agência Nacional de Transporte Terrestres. Brasília. http://portal.antt.gov.br/index.php/content/view/20272/Idade_Media_dos_Veiculos.html.

Alves, L., Holz, L. I., Fernandes, C., Ribeirinha, P., Mendes, D., Fagg, D. P., & Mendes, A. (2021). A comprehensive review of NOx and N2O mitigation from industrial streams. Renewable and Sustainable Energy Reviews. 111916, doi.org/10.1016/j.rser.2021.111916

Borillo, G. C., Tadano, Y. S., Godoi, A. F. L., Pauliquevis, T., Sarmiento, H., Rempel, D., Yamamoto, C. I., Marchi., M. R.R., Potgieter-Vermaak, S., & Godoi, R.H.M. (2018). Polycyclic aromatic hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Science of The Total Environment, 644, 675-682. doi.org/10.1016/j.scitotenv.2018.07.007

Burwell JR, R. L. (1976). Manual of symbols and terminology for physicochemical quantities and units - Appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Part II. Heterogeneous catalysis. International Union of Pure and Applied Chemistry. Elsevier.

Cheng, X., & Bi, X. T. (2014). A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology, 16, 1-18. doi.org/10.1016/j.partic.2014.01.006

Cleveland, M. J., Ziemba, L.D., Griffin, R. J., Dibb, J. E., Anderson, C. H., Lefer, B., & Rappengluck, B. (2012). Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy. Atmospheric Environment, 54, 511-518. doi.org/10.1016/j.atmosenv.2012.02.074

CETESB. (2021). Relatório de qualidade do ar no estado de São Paulo 2020. Companhia Ambiental do Estado de São Paulo. São Paulo.

CONAMA. (2008). Resolução-RE Nº403 de 11 de novembro de 2008. Conselho Nacional do Meio Ambiente.

DENATRAN. (2019). Estatística Frota 2019: Quantidade de Veículos por UF Município e Combustível. Departamento Nacional de Trânsito. https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2019.

Fang, D., Li, D., He, F., Xie, J., Xiong, C., & Chen, Y. (2019). Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx. Computational Materials Science, 160, 374-381. doi.org/10.1016/j.commatsci.2019.01.025

Gao, C., Shi, J., Fan, Z., Wang, B., Wang, Y., He, C., Wang, X., Li, J., & Niu, C. (2018). "Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. Applied Catalysis A: General, 564, 102-112. doi.org/10.1016/j.apcata.2018.07.017

Hao, C., Zhang, C., Zhang, J., Wu, J., Yue, Y., & Qian, G. (2022). An efficient strategy to screen an effective catalyst for NOx-SCR by deducing surface species using DRIFTS. Journal of Colloid and Interface Science, 606, 677-687. doi.org/10.1016/j.jcis.2021.08.070

Huang, C., Guo, R., Pan, W., Sun, X., Liu, S., Liu, J., Wang, Z., & Shi, X. (2019). SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: the improved K resistance. Journal of the Energy Institute, 92, 1364-1378. doi.org/10.1016/j.joei.2018.09.005

Huang, J., Huang, H., Jiang, H., & Liu, L. (2019). The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3 SCR of NOx. Catalysis Today, 332, 49 58. doi.org/10.1016/j.cattod.2018.07.031

Jankowska, A., Ciuba, J., Kowalcyk, A., Rutkowska, M., Piwowarska, Z., Michalik, M., & Chmielarz, L. (2021). Mesoporous silicas of MCM 41 type modified with iron species by template ion-exchange method as catalysts for the high-temperature NH3-SCR process - Role of iron species aggregation, silica morphology and associated reactions. Catalysis Today, 390-391, 281-294. doi.org/10.1016/j.cattod.2021.09.033

Jia, B., Guo, J., Luo, H., Shu, S., Fang, N., & Li, J. (2018). Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2. Applied Catalysis A: General, 553, 82-90. doi.org/10.1016/j.apcata.2017.12.016

Jiang, B., Lin, B., Li, Z., Zhao, S., & Chen, Z. (2020). Mn/TiO2 catalysts prepared by ultrasonic spray pyrolysis method for NOx removal in low-temperature SCR reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124210. doi.org/10.1016/j.colsurfa.2019.124210

Kim, H. J., Jo, S., Kwon, S., Lee, J., & Park, S. (2022). NOx emission analysis according to after-treatment devices (SCR, LNT + SCR, SDPF), and control strategies in Euro-6 light-duty diesel vehicles. Fuel, 310, 122297. doi.org/10.1016/j.fuel.2021.122297

Kim, H., Kasipandi, S., Kim, J., Kang, S., Kim, J., Ryu, J., & Bae, J. (2020). Current catalyst technology of selective catalytic reduction (SCR) for NOx removal in South Korea. Catalysts, 10, 52. doi.org/10.3390/catal10010052.

Kim, Y. J., Kwon, H. J., Nam, I., Choung, J. W., Kil, J. K., Kim, H., Cha, M., & Yeo, G. K. (2010). High de NOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 151, 244 250. doi.org/10.1016/j.cattod.2010.02.074

Li, J., Chen, J., Ke, R., Luo, C., & Hao, J. (2007). Effects of precursors on the surface Mn species and the activities for NO reduction over MnO/TiO2 catalysts. Catalysis Communications, 8, 1896-1900. doi.org/10.1016/j.catcom.2007.03.007

Li, Q., Li, X., Li, W., Zhong, L., Zhang, C., Fang, Q., & Chen, G. (2019). Effect of preferential exposure of anatase TiO2 {0 0 1} facets on the performance of Mn-Ce/TiO2 catalysts for low temperature selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 369, 26 34. doi.org/10.1016/j.cej.2019.03.054

Li, W., Guo, R., Wang, S., Pan, W., Chen, Q., Li, M., Sun, P., & Liu, S. (2016). The enhanced Zn resistance of Mn/TiO2 catalyst for NH3-SCR reaction by the modification with Nb. Fuel Processing Technology, 154, 235 242. doi.org/10.1016/j.fuproc.2016.08.038

Mohan, S., & Dinesha, P. (2021). Global kinetic modeling of low-temperature NH3-SCR for NOx removal using Cu-BEA catalyst. Materialstoday: Proceedings. 52, 1321-1325. doi.org/10.1016/j.matpr.2021.11.062

Niu, C., Wang, B., Xing, Y., Su, W., He, C., Xiao, L., Xu, Y., Zhao, S., Cheng, Y., & Shi, J. (2021). Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. Journal of Cleaner Production, 290, 125858. doi.org/10.1016/j.jclepro.2021.125858

Pagani, R., Kovaleski J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105, 2109-2135. doi.org/10.1007/s11192-015-1744-x

Shahir, V. K., Jawahar, C. P., & Suresh, P. R. (2015). Comparative emissions of diesel and biodiesel on CI engine with emphasis to emissions A review. Renewable and Sustainable Energy Reviews, 45, 686 697. doi.org/10.1016/j.rser.2015.02.042

Shen, Q., Dong, S., Li, S., Yang, G., & Pan, X. (2021). A review on the catalytic decomposition of NO by perovskite-type oxides. Catalysts, 11, 622. doi.org/10.3390/catal11050622

Shi, J., Zhang, Z., Chen, M., Zhang, Z., & Shangguan, W. (2017). Promotion effect of tungsten and iron co addition on the catalytic performance of MnOx/TiO2 for NH3-SCR of NOx. Fuel, 210, 783-789. doi.org/10.1016/j.fuel.2017.09.035

Sun, X., Guo, R., Liu, J., Fu, Z., Liu, S., Pan, W., Shi, X., Qin, H., Wang, Z., & Liu, X. (2018). The enhanced SCR performance of Mn/TiO2 catalyst by Mo modification: Identification of the promotion mechanism. International Journal of Hydrogen Energy, 43, 16038 16048. doi.org/10.1016/j.ijhydene.2018.07.057

Thirupathi, B., & Smirniotis, P. G. (2011). Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Applied Catalysis B: Environmental, 110, 195-206. doi.org/10.1016/j.apcatb.2011.09.001

Thirupathi, B., & Smirniotis, P. G. (2012). Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 288, 74-83. doi.org/10.1016/j.jcat.2012.01.003

Wang, A., & Olsson, L. The impact of automotive catalysis on the United Nations sustainable development goals. Nature Catalysis, 2, 566-570. doi.org/10.1038/s41929-019-0318-3

Wei, L., Cui, S., Guo, H., & Zhang, L. (2018). The effect of alkali metal over Mn/TiO2 for low temperature SCR of NO with NH3 through DRIFT and DFT. Computational Materials Science, 144, 216-222. doi.org/10.1016/j.commatsci.2017.12.013

Xie, S., Li, L., Jin, L., Wu, Y., Liu, H., Qin, Q., Wei, X., Liu, J., Dong, L., & Li, B. (2020). Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3 SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science, 515, 146014. doi.org/10.1016/j.apsusc.2020.146014

Xu, G., Guo, X., Cheng, X., Yu, J., & Fang, B. (2021). A review of Mn-based catalysts for low temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale, 13, 7052. doi.org/10.1039/D1NR00248A

Yan, R., Lin, S., Li, Y., Liu, W., Mi, Y., Tang, C., Wang, L., Wu, P., & Peng, H. (2020). Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. Journal of Hazardous Materials, 396, 122592. doi.org/10.1016/j.jhazmat.2020.122592

Ye, B., Lee, M., Jeong, B., Kim, J., Lee, D. H., Baik, J. M., & Kim, H. (2019). Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catalysis Today, 328, 300-306. doi.org/10.1016/j.cattod.2018.12.007

Zhang, W., Chen, J., Guo, L., Zheng, W., Wang, G., Zheng, S., & Wu, X. (2021). Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts. Journal of Fuel Chemistry and Technology, 49, 1294-1315. doi.org/10.1016/S1872-5813(21)60080-4

Zhao, W., Dou, S., Zhang, K., Wu, L., Wang, Q., Shang, D., & Zhong, Q. (2019). Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOx. Chemical Engineering Journal, 364, 401-409. doi.org/10.1016/j.cej.2019.01.166

Downloads

Publicado

14/10/2022

Como Citar

RIBEIRO, J. A. S. .; SOUSA, E. J. R.; FILGUEIRAS, J. de S. .; ARAÚJO, R. dos S. .; SILVA, G. M. M. Redução de NOx com NH3 sobre catalisadores de Mn/TiO2: uma revisão sistemática da literatura. Research, Society and Development, [S. l.], v. 11, n. 13, p. e510111335737, 2022. DOI: 10.33448/rsd-v11i13.35737. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/35737. Acesso em: 18 maio. 2024.

Edição

Seção

Artigos de Revisão