Monitoramento da estabilidade da xantofila fucoxantina em biomassas de microalga e algas marinhas e extratos armazenados a baixas temperaturas

Autores

DOI:

https://doi.org/10.33448/rsd-v11i15.37712

Palavras-chave:

Phaeophyceae; Isômeros de Fucoxantina; Carotenoides; UHPLC; Bacillariophyceae.

Resumo

A análise de fucoxantina (FCX) em biomassa de algas apresenta algumas limitações, principalmente quanto à preservação das amostras após a coleta até a extração do pigmento. A estabilidade da FCX foi avaliada em amostras de biomassas e extrato de uma diatomacea e três espécies de macroalgas marrons (Phaeophyceae) armazenadas à -20ºC e -80ºC, por 60 dias. Os conteúdos de FCX nas amostras foram determinados por UHPLC-DAD. Os extratos metanólicos das biomassas de micro/macroalgas armazenadas à -20ºC e -80ºC foram mais eficazes na preservação da xantofila, comparativamente às biomassas algais. A análise cromatográfica mostrou um aumento no tempo de retenção do pico de FCX nas amostras ao longo do armazenamento, possivelmente devido à isomerização trans→cis da molécula. Tal informação é relevante à escolha do melhor protocolo de armazenamento para preservar ao máximo os teores daquele oxicarotenoide, porque alterações nas conformações geométricas da molécula ao longo do armazenamento impactam fortemente nas atividades biológicas da FCX.

Referências

Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880–1902.

Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2011). Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 24(6), 811–820.

Aziz, E., Batool, R., Akhtar, W., Rehman, S., Shahzad, T., Malik, A., Shariati, M., Laishevtcev, A., Plygun, S., Heydari, M., Rauf, A., & Arif, S., A. (2020). Xanthophyll: Health benefits and therapeutic insights. Life Sciences, 240: 1-12.

Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K. I., Boulanger, R., Dufour, D., & Westby, A. (2010). Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chemistry, 121(2), 348–357.

Britton, G., & Khachik, F. (2009). Carotenoids in Food. In Carotenoids. Basel: Birkhäuser Basel.

Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology, 7(1), 1-15.

Christaki, E., Bonos, E., Giannenas, I., & Florou-Paneri, P. (2013). Functional properties of carotenoids originating from algae: Functional properties of algal carotenoids. Journal of the Science of Food and Agriculture, 93(1), 5–11.

Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M., Chan, K., & Ebrahimi, M. (2017). HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard. Data in Brief, 10, 583-586.

Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affana, A, Oh, C., Jung, W., & Jeon, Y. J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), 2045-2051.

Honda, M. (2020). Nutraceutical and Pharmaceutical Applications of Carotenoids. Pigments from Microalgae Handbook. Springer: Germany.

Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Science, 67(5), 771-783.

Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14 (7), 13763-13781.

Nakazawa, Y., Sashima, T., Hosokawa, M., & Miyashita, K. (2009). Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. Journal of Functional Foods, 1(1), 88-97.

Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 1-21.

Pangestuti, R., Siahaan, E. A., & Kim, S-K. (2018). Photoprotective substances derived from marine algae. Marine Drugs, 16(11): 1-16.

Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid presents in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806-1828.

Piovan, A., Seraglia, R., Bresin, B., Caniato, R., & Filippini, R. (2013). Fucoxanthin from Undaria pinnatifida: Photostability and coextractive effects. Molecules, 18(6), 6298-6310.

Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L. R., Hosokawa M., & Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2), 501-508.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/.

Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., & Ribot, J. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93.

Ryckebosch, E., Muylaert, K., Eeckhout, M., Ruyssen, T., & Foubert, I. (2011). Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. Journal of Agricultural and Food Chemistry, 59(20), 11063-11069.

Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science & Technology, 13(11), 361-371.

Teixeira, J., Feio, M., & Figueira, M. L. (2014). O papel do stress oxidativo no envelhecimento e na demência. Psilogos: Revista do Serviço de Psiquiatria do Hospital Fernando Fonseca, 12, 43-57.

Wood, L. G., Garg, M. L., Blake, R. J., Garcia-Caraballo, S., & Gibson, P. G. (2005). Airway and circulating levels of carotenoids in asthma and healthy controls. Journal of the American College of Nutrition, 24(6), 448-455.

Yabuzaki J. (2017). Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database (Oxford), 2017(1), bax004.

Zhao, D., Kim, S. M., Pan, C. H., & Chung, D. (2014). Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil. Food Chemistry, 145, 505-513.

Downloads

Publicado

26/11/2022

Como Citar

SCHMITZ, C.; NUNES, A.; BAUER , C. M. .; BONOMI-BARUFI, J.; MARASCHIN, M. Monitoramento da estabilidade da xantofila fucoxantina em biomassas de microalga e algas marinhas e extratos armazenados a baixas temperaturas. Research, Society and Development, [S. l.], v. 11, n. 15, p. e577111537712, 2022. DOI: 10.33448/rsd-v11i15.37712. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/37712. Acesso em: 19 maio. 2024.

Edição

Seção

Ciências Agrárias e Biológicas