Uso de Trichoderma na promoção de crescimento de mudas florestais

Autores

DOI:

https://doi.org/10.33448/rsd-v12i1.39138

Palavras-chave:

Shizolobium amazonicum; Entererolobium maximun; Apuleia leiocarpa; Fungo.

Resumo

O uso de espécies florestais é comum para diversos fins como produção de móveis, embarcações aquáticas e subprodutos como carvão. Os microrganismos são alternativas viáveis para aumentar a eficiência de produção de mudas dessas espécies. O objetivo do presente trabalho foi avaliar a eficiência dos inoculantes de Trichoderma, como promotor de crescimento vegetal nas espécies de Paricá (Shizolobium amazonicum), Fava-tamboril (Entererolobium maximun) e Amarelão (Apuleia leiocarpa). Foram utilizados dois isolados de Trichoderma: UFT-57 (Trichoderma virens) e UFT-21 (T. asperelloides). Os isolados foram repicados em placa de petri com meio BDA (batata, dextrose e ágar) e incubados em câmara B.O.D., a 27 °C ± 2 °C, por 12 horas com luz, por sete dias. No plantio foi realizada a inoculada com uma suspensão de cada isolado de Trichoderma com o auxílio de uma pipeta graduada, sendo adicionado 1 mL em cada tubete, com a semeadura de três semente e posteriormente deixando uma planta por tubete. Foram avaliados altura da planta, diâmetro do colmo, volume da raiz, massa seca da parte aérea, massa seca da raiz e índice de qualidade de Dickison. Os isolados de T. asperelloides e T. virens possuem desempenho positivo na produção de mudas de Paricá, Fava-tamboril e Amarelão, evidenciado pelo aumento de biomassa tanto no sistema radicular quanto na parte aérea.

Referências

Almeida, D. H., Scaliante, R. M., Macedo, L. B., Macedo, A. N., Dias, A. A., Christoforo, A. L., & Junior, C. C. (2013). Caracterização completa da madeira da espécie amazônica Paricá (Schizolobium amazonicum HERB) em peças de dimensões estruturais. Revista Árvore, 37, 1175-1181. https://doi.org/10.1590/S0100-67622013000600019.

Amador, A. M. L., Chaves, L. H. G., & Guerra, H. O. C. (2007). Desenvolvimento de mudas de cássia e tamboril em diferentes composições de substratos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 2, 78-84.

Amaral, P. P., Steffen, G. P. K., Maldaner, J., Missio, E. L., & Saldanha. C. W. (2017). Promotores de crescimento na propagação de caroba. Pesquisa Florestal Brasileira, 37, 149-157. https://doi.org/10.4336/2017.pfb.37.90.1402.

Angélico, T. S., Marcati, C. R., Rossi, S., Silva, M. R., & Sonsin-Oliveira, J. (2021). Soil effects on stem growth and wood anatomy of tamboril are mediated by tree age. Forests, 12, 1058. https://doi.org/10.3390/f12081058.

Azevedo, G. B., Novaes, Q., Azevedo, G. T. Silva, H. F., Sobrinho, G. G. R., & Novais, A. (2017). Efeito de Trichoderma spp. no crescimento de mudas clonais de Eucalyptus camaldulensis. Scientia Forestalis, 45, 343-352. https://doi.org/10.18671/SCIFOR.V45N114.10.

Guimarães, B. P., Neves, L. E. P., Guimarães, M. G., & Ghesti, G. F. (2020). Evaluation of maturation congeners in beer aged with Brazilian woods. Journal of Brewing and Distilling, 9, 1-7. https://doi.org/10.5897/JBD2019.0053.

Chagas, L. F. B., Chagas Junior, A. F., Carvalho, M. R. C., Miller, L. O., & Colonia, B. S. O. (2015). Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal Soil Science and Plant Nutrition, 15, 794-804. https://doi.org/10.4067/S0718-95162015005000054.

Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4, 97-102. https://doi.org/10.32404/rean.v4i3.1529.

Chagas Junior, A. F., Chagas, L. F. B., Miller, L. O. & Oliveira, J. C. (2019a). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14, 263-271. https://doi.org/10.5897/AJAR2018.13556.

Chagas Junior, A. F., Chagas, L. F. B., Colonia, B. S. O., Miller, L. O. & Oliveria, J. C. (2019b). Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. African Journal of Agricultural Research, 14, 1772-1777. https://doi.org/10.5897/AJAR2019.13985.

Chagas, A. F., Gomes, F. L., Martins, A. L. L., Oliveira, R. S., Marcos, G., & Chagas, L. F. B. (2021). Trichoderma como promotor de crescimento de mudas de eucaliptos. Journal of Biotechnology and Biodiversity, 9, 060-072, 2021. https://doi.org/10.20873/jbb.uft.cemaf.v9n1.chagasjunior.

Dickson A, Leaf AL, Hosner JF. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron., v. 36, p. 10-13, 1960.

Griebeler, A. M., Araújo, M. M., Tabaldi, L. A., Steffen, G. P. K., Turchetto, F., Rarato, D. G., Barbosa, F. M., Berghetti, A. L. P., Nhamtumbo, L. S., & Lima, M. S. (2021). Type of container and Trichoderma spp. inoculation enhance the performance of tree species in enrichment planting. Ecological Engineering, 169, 106317. https://doi.org/10.1016/j.ecoleng.2021.106317.

Gupta, K. J., Mur, L. A. J., & Brotman, Y. (2014). Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. Molecular Plant-Microbe Interactions, 27, 307-314. https://doi.org/10.1094/MPMI-06-13-0160-R.

Hoyos-Carvajal, L., Orduz, S., & Bissett, J. (2009). Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology, 46, 615-631. https://doi.org/10.1016/j.fgb.2009.04.006.

Junges, E., Muniz, M. F., Mezzomo, R., Bastos, B., & Machado, R. T. (2016). Trichoderma spp. na produção de mudas de espécies florestais. Floresta e Ambiente, 23, 237-244. https://doi.org/10.1590/2179-8087.107614.

Lucon, C. M. M. (2017). InfoBibos. Promoção de crescimento de plantas com o uso de Trichoderma spp. [internet] [acesso em 20 set 2017]. Disponível em: http://www.infobibos.com/Artigos/2009_1/trichoderma/index.htm.

Melo, L. A., Abreu, A. H. M., Leles, P. S. S., Oliveira, R. R., & Silva, D. T. (2018). Qualidade e crescimento inicial de mudas de Mimosa caesalpiniifolia Benth. produzidas em diferentes volumes de recipientes. Ciência Florestal, 28, 47-55. https://doi.org/10.5902/1980509831574.

Nicolás, C., Hermosa, R., Rubio, B., Mukherjee, P. K., & Monte, E. (2014). Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science, 228, 71-78. https://doi.org/10.1016/j.plantsci.2014.03.005.

Peel, M. C., Finlayson, B. L., & McMahon, A. (2007). Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, 11, 1633-1644. https://doi.org/10.5194/hess-11-1633-2007.

Pereira, L. T., Andrade, K. S. P., Nunes, S. E. A., Belfort, M. G. S., Oliveira, F. S., & Nascimento, I. O. (2020). Efeitos de rizobactérias na promoção de crescimento e controle de fitopatógenos em sementes de paricá. Revista Ibero-Americana de Ciências Ambientais, 11, 539-548. https://doi.org/10.6008/CBPC2179-6858.2020.005.0049.

Samuels, G. J., Ismaiel, A., Bon, M., Respinis, S., & Petrini, O. (2010). Trichoderma asperellum sensulato consists of two cryptic species. Mycologia, 10, 944-966. https://doi.org/10.3852/09-243.

Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. doi:10.1146/annurev-phyto-073009-114450.

Silva, D. A., Almeida, V. C., Viana, L. C., Klock, U., & Muñiz, G. I. B. (2014). Avaliação das propriedades energéticas de resíduos de madeiras tropicais com uso da espectroscopia NIR. Floresta e Ambiente, 21, 561-568. https://doi.org/10.1590/2179-8087.043414.

Soriano, J., Veiga, N. S., & Martins, I. Z. (2015). Wood density estimation using the sclerometric method. European Journal of Wood and Wood Products, 73, 753-758. https://doi.org/10.1007/s00107-015-0948-3.

Stefanini M. B., Rodrigues, S. D., & Ming, L. C. Ação de fitorreguladores no crescimento da erva-cidreira-brasileira. Horticultura Brasileira, 20, 18-23. https://doi.org/10.1590/S0102-05362002000100003.

Taiz, L., & Zeiger, E. (2009). Fisiologia vegetal. Porto Alegre: Artmed, 819p.

Zhao, L., & Zhang, Y. (2015). Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, 14, 1-15. https://doi.org/10.1016/S2095-3119(14)60966-7.

Downloads

Publicado

08/01/2023

Como Citar

RIBEIRO, A. P. M. da S. .; LIMA, C. A.; LOPES, M. B. .; MOURA, D. M. de O. .; FERREIRA, A. L. L. .; MARTINS, A. L. L. .; CHAGAS, L. F. B. .; CHAGAS JUNIOR, A. F. Uso de Trichoderma na promoção de crescimento de mudas florestais. Research, Society and Development, [S. l.], v. 12, n. 1, p. e19712139138, 2023. DOI: 10.33448/rsd-v12i1.39138. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/39138. Acesso em: 18 maio. 2024.

Edição

Seção

Ciências Agrárias e Biológicas