Radiographic and spectroscopic evaluation of composition and attenuation in colored pencils
DOI:
https://doi.org/10.33448/rsd-v14i11.50040Keywords:
Use of Radiation, X-Rays, X-Ray Diffraction, Radiology.Abstract
The present study proposes the application of digital industrial radiography techniques to analyze colored pencils of different formulations, aiming to identify structural and compositional variations associated with X-ray attenuation. This investigation seeks to demonstrate the potential of industrial radiography as both a didactic and scientific tool for the characterization of low-density materials. The images were acquired using an Intecal MAAF radiographic system coupled with a Carestream Direct View Classic CR computed radiography system. The samples were mounted on a 3D-printed support designed in Tinkercad. Radiographic contrast (CR) analysis was performed using ImageJ, comparing internal and external regions of interest within the pencils. Additionally, structural characterization was carried out through X-ray diffraction (BRUKER D2 PHASER). The results revealed significant attenuation variations among the pencils. The “brown spice” sample (IL3) exhibited higher CR values in four of the five boxes, suggesting that its specific formulation directly influences its interaction with radiation. The analysis also indicated heterogeneity among pencils of the same color, later confirmed and quantified by spectroscopy. The ability to detect such differences in low-density materials highlights the potential of industrial radiography for quality control of polymers and composites. Moreover, the distinctive attenuation of the brown spice pigment points to possible applications as a radiopaque marker in medical, forensic, and artifact conservation analyses. Future studies should aim to establish quantitative relationships between composition and attenuation, as well as expand sampling and include manufacturing data to improve quality control strategies.
References
Andreucci, R. (2006). Introdução à Radiologia industrial disponível na internet no site. http://publicacoes.unigranrio.edu.br/index.php/rcs/article/view/3246. Acesso em: 02 de junho. de 2025.
Bardini, I. Z., Antoniazzi, M. A. S., Fermino, C. D. Z., & Godinho, E. Z. (2024). Estudo teórico e comparativo das técnicas de gamagrafia e radiografia industrial com base na análise de eficácia aplicacional. Disciplinarum Scientia| Naturais e Tecnológicas, 25(2), 67-78.
Barreto, M. S. C. (2019). Chemical interaction mechanisms of metals, inorganics anions, organic acids and protein on purified material, artificial soil and cropland soil Piracicaba. (Tese de doutorado). Universidade de São Paulo, Piracicaba, SP, Brasil.
Bitencourt, M. V., Poletto Filho, J. A., Silva, D. C., Cardoso, F. M., & Lobo, A. G. (2014). Aplicação do ensaio não destrutivo por raios-x na análise da qualidade de componentes aeronáuticos fundidos em liga de alumínio.
Bushberg, J. T., & Boone, J. M. (2011). The essential physics of medical imaging. Lippincott Williams & Wilkins.
Carestream, D. R. X. (2016). Philips exploits latest web technology at its successful CT study day.
Carroll, Q. B. (2023). Radiography in the Digital Age: Physics-exposure-radiation biology. Charles C Thomas Publisher.
Claus, T. V. (2021). Avaliação da influência no uso de filtração adicional em exames radiográficos de pelve por meio de um objeto simulador (Dissertação de mestrado). Instituto Federal De Educação, Ciência E Tecnológica De Santa Catarina, Florianópolis, SC, Brasil.
Claus, T. V., de Bail, F. A. T., Bohrer, B., & Torres, H. R. (2023). Avaliação experimental do uso de filtração adicional na saída do tubo radiográfico clínico na qualidade de imagem para ensaios não destrutivos em Radiologia Industrial. Disciplinarum Scientia| Naturais e Tecnológicas, 24(2), 1-21.
Dance, D. R., Christofides, S., Maidment, A. D. A., McLean, I. D., & Ng, K. H. (2014). Diagnostic radiology physics: A handbook for teachers and students. Endorsed by: American association of physicists in medicine, Asia-Oceania federation of organizations for medical physics, European federation of organisations for medical physics. IAEA.
Deflon, R. D. J. (2021). Desenvolvimento de sensores eletroquímicos de grafite de lápis modificado com complexos do tipo [M (salen)](M= Cu, Mn e Ni)/óxido de grafeno para a quantificação de acetaminofeno (Dissertação de mestrado). Universidade de São Paulo, São Carlos, SP, Brasil.
Ferrarini, S. F., Bonetti, B., Hammerschmitt, M. E., Galli, C. F., & Pires, M. J. R. (2020). Encapsulamento De Zeólita Fertilizante Utilizando Biopolímero. In Azevedo, E. M. (Org.). A Química nas Áreas Natural, Tecnológica e Sustentável (pp. 124-134). Ponta Grossa, PR: Atena.
Júnior, J. A. A., Silva, M. F., de Fraga Saltiél, A., Figueiredo, B. V. C., Ojeda, J. M., Moretti, J. C. G. A., ... & de Lima Bizerra, G. H. (2023). A gamagrafia como aliada à indústria e construção. Brazilian Journal of Health Review, 6(4), 18928-18941.
Kogure, T., Kameda, J., Matsui, T., & Miyawaki, R. (2006). Stacking structure in disordered talc: Interpretation of its X-ray diffraction pattern by using pattern simulation and high-resolution transmission electron microscopy. American Mineralogist, 91(8-9), 1363-1370.
Mazzilli, B. P., Máduar, M. F., & Campos, M. P. (2011). Radioatividade no meio ambiente e avaliação de impacto radiológico ambiental. São Paulo: IPEN, 92.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Pomies, M. P., Morin, G., & Vignaud, C. (1998). XRD study of the goethite-hematite transformation: application to the identification of heated prehistoric pigments. European Journal of Solid State and Inorganic Chemistry, 35(1), 9-25.
Sakharov, B. A., Drits, V. A., McCarty, D. K., & Walker, G. M. (2016). Modeling Powder X-Ray Diffraction Patterns of the Clay Minerals Society Kaolinite Standards: Kga-1, Kga-1b, and Kga-2. Clays and Clay Minerals, 64(3), 314–333.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675.
Silva, R. F. (2020). A Difração de Raios X: uma técnica de investigação da estrutura cristalina de materiais. Revista Processos Químicos, 14(27), 73-82.
Tavares, A., Lança, L., & Machado, N. (2015). Effect of technical parameters on dose and image quality in a computed radiography system. In Scientific Exhibit, ECR 2015 Congress, European Society of Radiology, Poster No.: C-2035.
Trombini, H., & Dytz, A. G. (2013). Imagens em radiografia industrial: fatores que alteram a qualidade da imagem. VETOR - Revista de Ciências Exatas e Engenharias, 23(2), 71-81.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Thiago Victorino Claus, Luísa Vargas Cassol, Adrine Silveira da Silva, Nataly Nogueira Favarin, Edmeia Lopes Ramai Buss, Rafael Rimoli da Luz Santos, Leonardo Vidal Zancanaro, Cristiano Rodrigo Bohn Rhoden

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
