Image-based assessment of morphological responses and biomass allocation in cowpea seedlings: A methodological approach to drought resilience phenotyping

Authors

DOI:

https://doi.org/10.33448/rsd-v14i10.49730

Keywords:

Vigna unguiculata (L.) Walp., Root length, Biomass partition, Climate change.

Abstract

Water deficit during the early development of cowpea (Vigna unguiculata (L.) Walp.) can compromise seedling establishment and reduce crop uniformity. This study aimed to evaluate morphological responses and biomass allocation in eight cowpea genotypes, including four commercial cultivars and four landraces, under two water conditions (control and deficit). A randomized block design was applied in a 2 × 8 factorial scheme. Morphological traits of roots and shoots, including length, surface area, volume, and diameter, were measured using image-based analysis. Dry biomass and root-to-shoot ratio were determined through gravimetric methods. Significant genotype-by-environment interactions were observed. Commercial cultivars tended to maintain structural attributes such as stem and root diameter, while landraces, particularly “Marronzinha” and “Verdinha”, exhibited greater plasticity in root morphology and biomass accumulation under water restriction. Although the methodology allowed efficient early phenotyping, limitations such as the short stress duration and use of two-dimensional imaging may restrict broader inferences. Future studies should incorporate extended drought periods, field validation, and physiological assessments to enhance the identification of drought-resilient genotypes.

References

Afonso, P., Castro, I., Couto, P., Leal, F., Carnide, V., Rosa, E., & Carvalho, M. (2025). Root phenotyping: A contribution to understanding drought stress resilience in grain legumes. Agronomy, 15(4), 798. https://doi.org/10.3390/agronomy15040798

Agbicodo, E. M., Fatokun, C. A., Muranaka, S., Visser, R. G. F., & Van der Linden, C. G. (2009). Breeding drought tolerant cowpea: Constraints, accomplishments, and future prospects. Euphytica, 167(3), 353–370. https://doi.org/10.1007/s10681-009-9893-8

Almeida, F. S., Mingotte, F. L. C., Lemos, L. B., & Santana, M. J. (2017). Desempenho agronômico de cultivares de feijão-caupi em função das épocas de semeadura no cerrado de Uberaba-MG. Revista Caatinga, 30(2), 361–369. https://doi.org/10.1590/1983-21252017v30n211rc

Barros, J. R. A., Guimarães, M. J. M., Simões, W. L., De Melo, N. F., & Angelotti, F. (2021). Water restriction in different phenological stages and increased temperature affect cowpea production. Ciência e Agrotecnologia, 45, e0022120. https://doi.org/10.1590/1413-7054202145022120

Bouma, T. J., Nielsen, K. L., & Koutstaal, B. (2000). Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and Soil, 218, 185–196. https://doi.org/10.1023/A:1014905104017

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2009). Regras para análise de sementes (395 p.). MAPA/ACS. https://www.gov.br/agricultura/pt-br/assuntos/lfda/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view

Bukan, M., Kereša, S., Pejić, I., Sudarić, A., Lovrić, A., & Šarčević, H. (2024). Variability of root and shoot traits under PEG-induced drought stress at an early vegetative growth stage of soybean. Agronomy, 14(6), 1188. https://doi.org/10.3390/agronomy14061188

Farooq, M. S., Uzair, M., Raza, A., Habib, M., Xu, Y., Yousuf, M., & Khan, M. R. (2022). Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Frontiers in Plant Science, 13, 927535. https://doi.org/10.3389/fpls.2022.927535

Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R., Rosa, E. A. S., António, C., & Trindade, H. (2017). Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Frontiers in Plant Science, 8, 586. https://doi.org/10.3389/fpls.2017.00586

Hall, A. E. (2012). Phenotyping cowpeas for adaptation to drought. Frontiers in Physiology, 3, 155. https://doi.org/10.3389/fphys.2012.00155

Javornik, T., Carović-Stanko, K., Gunjača, J., Šatović, Z., Vidak, M., Safner, T., & Lazarević, B. (2025). Phenotyping common bean under drought stress: High-throughput approaches for enhanced drought tolerance. Agronomy, 15(6), 1344. https://doi.org/10.3390/agronomy15061344

Kalra, A., Goel, S., & Elias, A. A. (2024). Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. Plant Genome, 17, e20395. https://doi.org/10.1002/tpg2.20395

Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H. D., Krishna, H., Chandra, S., Vadez, V., & Serraj, R. (2015). Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Research, 170, 47–54. https://doi.org/10.1016/j.fcr.2014.10.001

Matsui, T., & Singh, B. B. (2003). Root characteristics in cowpea related to drought tolerance at the seedling stage. Experimental Agriculture, 39(1), 29–38. https://doi.org/10.1017/S0014479703001917

Martínez-Nieto, M. I., González-Orenga, S., Soriano, P., Prieto-Mossi, J., Larrea, E., Doménech-Carbó, A., Tofei, A. M., Vicente, O., & Mayoral, O. (2022). Are traditional lima bean (Phaseolus lunatus L.) landraces valuable to cope with climate change? Effects of drought on growth and biochemical stress markers. Agronomy, 12(7), 1715. https://doi.org/10.3390/agronomy12071715

Muchero, W., Roberts, P. A., Diop, N. N., Drabo, I., Cissé, N., Close, T. J., Muranaka, S., Boukar, O., & Ehlers, J. D. (2013). Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE, 8(7), e70041. https://doi.org/10.1371/journal.pone.0070041

Omomowo, O. I., & Babalola, O. O. (2021). Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Frontiers in Plant Science, 12, 751731. https://doi.org/10.3389/fpls.2021.751731

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [livro gratuito]. Santa Maria: Editora da UFSM.

Santos, J. L. C., Leite, W. S., Sousa, A. V. A. R., Lima, W. R., Diniz, F. O., & Lima, G. N. (2023). Genetic diversity and importance of agronomic traits in cowpea genotypes in conditions of low technological level in Piauí. Revista Ceres, 70(6), 1–9. https://doi.org/10.1590/0034-737X202370060005

Silveira, I. de C., Dias, P. A. S., Hamawaki, O. T., Medeiros, L. A., Ferreira, S. B., & Nogueira, A. P. O. (2024). Genetic diversity and responses of soybean genotypes to water deficit induced by PEG 6000. Revista Ceres, 71(1), 1–9. https://doi.org/10.1590/0034-737x2024710038

Silva, J., Costa, R. S., Tomaz, F. L. D. S., Bezerra, A. E., & Mesquita, R. O. (2021). Mechanisms of tolerance to water deficit and physiological responses to rehydration in cowpea. Revista Ciência Agronômica, 52(3), 1–10. https://doi.org/10.5935/1806-6690.20210034

Taiz, M., Zeiger, E., Mooler, I. M., & Murphy, A. (2017). Plant physiology (6ª ed.). Artmed. https://doi.org/10.1007/978-1-4614-7578-6

Umburanas, R. C., Donegá, V. C., De Queiroz, V. M., Fontana, D. C., Bampi, D., Dourado-Neto, D., & Reichardt, K. (2019). Root attributes and seedling biomass of old and modern soybean cultivars under water deficit. Emirates Journal of Food and Agriculture, 31(9), 688–696. https://doi.org/10.9755/EJFA.2019.V31.I9.1994

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Wang, X., Song, S., Wang, X., Liu, J., & Dong, S. (2022). Transcriptomic and metabolomic analysis of seedling-stage soybean responses to PEG-simulated drought stress. International Journal of Molecular Sciences, 23(12), 6869. https://doi.org/10.3390/ijms23126869

Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O. A., & Carol, P. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 218, 26–34. https://doi.org/10.1016/j.jplph.2017.07.009

Zheng, C., Bochmann, H., Liu, Z., Kant, J., Schrey, S. D., Wojciechowski, T., & Postma, J. A. (2023). Plant root plasticity during drought and recovery: What do we know and where to go? Frontiers in Plant Science, 14, 1084355. https://doi.org/10.3389/fpls.2023.1084355

Downloads

Published

2025-10-17

Issue

Section

Agrarian and Biological Sciences

How to Cite

Image-based assessment of morphological responses and biomass allocation in cowpea seedlings: A methodological approach to drought resilience phenotyping. Research, Society and Development, [S. l.], v. 14, n. 10, p. e107141049730, 2025. DOI: 10.33448/rsd-v14i10.49730. Disponível em: https://www.rsdjournal.org/rsd/article/view/49730. Acesso em: 9 dec. 2025.