Morphological, Electrical, and Mechanical Characterization of a Sustainable Three-Phase Composite Based on Natural Rubber, Leather Residue, and PZT Particles
DOI:
https://doi.org/10.33448/rsd-v14i10.49793Keywords:
Natural rubber, Leather residue, PZT, Piezoelectric composites, Electrical and mechanical properties.Abstract
The purpose of this study is to evaluate the morphological and electrical properties of a composite made from vulcanized natural rubber (VNR) reinforced with PZT particles and leather residue (LR). The materials were processed using a simple open-roll mixing method, keeping constant proportions of natural rubber and leather residue, while varying the PZT content at 25 and 50 phr. Scanning electron microscopy revealed homogeneous dispersion of both the LR and PZT particles within the VNR matrix, with no visible agglomerations, confirming the effectiveness of the mixing process. Electrical impedance analyses indicated that all composites exhibited frequency-dependent conductivity, a characteristic of disordered solid materials. Samples containing higher PZT concentrations showed increased conductivity at low frequencies, mainly due to dipole movement within the ceramic phase. Dielectric permittivity and capacitance also decreased with increasing frequency, while the composite with 50 phr of PZT presented the highest dielectric constant and energy storage capacity. Mechanical tests demonstrated that the inclusion of LR enhanced tensile strength and reduced elongation at break, acting as a fibrous reinforcement. The addition of PZT particles increased stiffness, resulting in slightly more brittle behavior. The VNR-LR/PZT three-phase composite with 50 phr PZT achieved the best balance between the mechanical strength and electrical performance. Overall, the results confirm that the developed composite exhibits promising multifunctional behavior suitable for piezoelectric sensing and energy-harvesting applications. Furthermore, the reuse of leather waste provides an environmentally responsible alternative, converting an industrial residue into a functional, high-value material with both technological and ecological benefits.
References
Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., Al-Gehlani, W. A. G., & Alrawaf, T. I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. International Journal of Environmental Research and Public Health, 19(19), 12717. https://doi.org/10.3390/ijerph191912717
Araújo, S. S., Santos, G. T. A., Tolosa, G. R., Hiranobe, C. T., Budemberg, E. R., Cabrera, F. C., Silva, M. J. da, Paim, L. L., Job, A. E., & Santos, R. J. dos. (2023). Acai Residue as an Ecologic Filler to Reinforcement of Natural Rubber Biocomposites. Materials Research, 26(suppl 1). https://doi.org/10.1590/1980-5373-mr-2022-0505
Arnau, A., & Soares, D. (2009). Fundamentals of Piezoelectricity. Em Piezoelectric Transducers and Applications (p. 1–38). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77508-9_1
Bowen, C. R., Topolov, V. Yu., & Kim, H. A. (2016). Modern Piezoelectric Energy-Harvesting Materials (Vol. 238). Springer International Publishing. https://doi.org/10.1007/978-3-319-29143-7
Callister, W. D. (1991). Materials science and engineering: An introduction (2nd edition). Materials & Design. https://doi.org/10.1016/0261-3069(91)90101-9
Cavalcante, D. G. S. M., Gomes, A. S., Santos, R. J., Kerche-Silva, L. E., Danna, C. S., Yoshihara, E., & Job, A. E. (2018). Composites Produced from Natural Rubber and Chrome-Tanned Leather Wastes: Evaluation of their In Vitro Toxicological Effects for Application in Footwear and Textile Industries. Journal of Polymers and the Environment, 26(3), 980–988. https://doi.org/10.1007/s10924-017-1002-9
Cavalcante, D. G. S. M. S. M., Gomes, A. S., Dos Reis, E. A. P., Danna, C. S., Kerche-Silva, L. E., Yoshihara, E., Job, A. E., Ap, E., Danna, C. S., Silva, L. E. K., Yoshihara, E., & Job, A. E. (2017). In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications. Toxicology and Industrial Health, 33(6), 478–486. https://doi.org/10.1177/0748233716674398
Costa, J. G. L., Rodrigues, P. H. F., Paim, L. L., Sanches, A. O., Malmonge, J. A., & Da Silva, M. J. (2020). 1-3 castor oil-based polyurethane/PZT piezoelectric composite as a possible candidate for structural health monitoring. Materials Research, 23(5), 1–9. https://doi.org/10.1590/1980-5373-MR-2020-0205
Covington, A. D., & Wise, W. R. (2020). Current trends in leather science. Journal of Leather Science and Engineering, 2(1), 28. https://doi.org/10.1186/s42825-020-00041-0
de Azevedo, C. G., dos Santos, R. J., Hiranobe, C. T., Zanette, A. F., Job, A. E., & Silva, M. J. (2023). The invasive Egeria densa macrophyte and its potential as a new renewable energy source: A study of degradation kinetics and thermodynamic parameters. Science of The Total Environment, 856, 158979. https://doi.org/10.1016/j.scitotenv.2022.158979
De Campos Fuzari, G., Orlandi, M. O., Longo, E., Melo, W. L. D. B., & Sakamoto, W. K. (2013). Effect of controlled conductivity on thermal sensing property of 0-3 pyroelectric composite. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/22/2/025015
Freire Filho, F. C. M., Santos, J. A., Sanches, A. O., Medeiros, E. S., Malmonge, J. A., & Silva, M. J. (2023). Dielectric, electric, and piezoelectric properties of three‐phase piezoelectric composite based on castor‐oil polyurethane, lead zirconate titanate particles and multiwall carbon nanotubes. Journal of Applied Polymer Science, 140(9). https://doi.org/10.1002/app.53572
Furukawa, T. (1989). Piezoelectricity and pyroelectricity in polymers. IEEE Transactions on Electrical Insulation, 24(3), 375–394. https://doi.org/10.1109/14.30878
Ghosh, A. K., & Dwivedi, M. (2020). Advantages and Applications of Polymeric Composites. Em Processability of Polymeric Composites (p. 29–57). Springer India. https://doi.org/10.1007/978-81-322-3933-8_2
Gong, Y., Liu, X., Huang, L., & Chen, W. (2010). Stabilization of chromium: An alternative to make safe leathers. Journal of Hazardous Materials, 179(1–3), 540–544. https://doi.org/10.1016/j.jhazmat.2010.03.037
Jackson, N., Mathewson, A., Ramadan, K. S., Sameoto, D., & Evoy, S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3). https://doi.org/10.1088/0964-1726/23/3/033001
Katsumi, W., Fuzari Jr, G. de C., Aparecida, M., & de Freitas, R. L. B. (2011). Lead Titanate-Based Nanocomposite: Fabrication, Characterization and Application and Energy Conversion Evaluation. Em Ferroelectrics - Material Aspects. https://doi.org/10.5772/18238
Malmonge, J. A., Malmonge, L. F., Fuzari, G. C., Malmonge, S. M., & Sakamoto, W. K. (2009). Piezo and dielectric properties of PHB-PZT composite. Polymer Composites. https://doi.org/10.1002/pc.20719
Patsidis, A., & Psarras, G. C. (2008). Dielectric behaviour and functionality of polymer matrix - Ceramic BaTiO 3 composites. Express Polymer Letters, 2(10), 718–726. https://doi.org/10.3144/expresspolymlett.2008.85
Rebeque, P. V., Silva, M. J., Cena, C. R., Nagashima, H. N., Malmonge, J. A., & Kanda, D. H. F. (2019). Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polymer Composites, 40(1), 7–15. https://doi.org/10.1002/pc.24588
Rhodes, S. M. (2007). Electrically conductive polymer composites. December, 1–250.
Riaz, U., & Ashraf, S. M. (2013). Conductive Polymer Composites and Blends: Recent Trends. Em Nanostructured Polymer Blends. Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3159-6.00015-8
Ruiz, M. R., Budemberg, E. R., da Cunha, G. P., Bellucci, F. S., da Cunha, H. N., & Job, A. E. (2015). An innovative material based on natural rubber and leather tannery waste to be applied as antistatic flooring. Journal of Applied Polymer Science, 132(3), n/a-n/a. https://doi.org/10.1002/app.41297
Sampathkumar, P., Gowdhaman, P., Sundaram, S., & Annamalai, V. (2013). A Review on PZT-Polymer Composites : Dielectric and Piezoelectric Properties. NANO VISION.
Sanches, A. O., Kanda, D. H. F., Malmonge, L. F., da Silva, M. J., Sakamoto, W. K., & Malmonge, J. A. (2017). Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polymer Testing, 60, 253–259. https://doi.org/10.1016/j.polymertesting.2017.03.031
Santos, R. J., Agostini, D. L. S., Cabrera, F. C., Budemberg, E. R., & Job, A. E. (2015). Recycling leather waste: Preparing and studying on the microstructure, mechanical, and rheological properties of leather waste/rubber composite. Polymer Composites, 36(12). https://doi.org/10.1002/pc.23140
Sivaram, N. M., & Barik, D. (2019). Toxic Waste From Leather Industries. Em Energy from Toxic Organic Waste for Heat and Power Generation (p. 55–67). Elsevier. https://doi.org/10.1016/B978-0-08-102528-4.00005-5
Tyagi, S., Garg, N., & Paudel, R. (2014). Environmental Degradation: Causes and Consequences. European Researcher, 81(8–2), 1491. https://doi.org/10.13187/er.2014.81.1491
Venkatragavaraj, E., Satish, B., Vinod, P. R., & Vijaya, M. S. (2001). Piezoelectric properties of ferroelectric PZT-polymer composites. Journal of Physics D: Applied Physics. https://doi.org/10.1088/0022-3727/34/4/308
Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6
Yang, Z., Zeng, D., Wang, H., Zhao, C., & Tan, J. (2015). Harvesting ultrasonic energy using 1-3 piezoelectric composites. Smart Materials and Structures, 24(7). https://doi.org/10.1088/0964-1726/24/7/075029
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Raquel Laina Barbosa dos Santos, Hellinton dos Santos, Diego Silva de Melo, Nuelson Carlitos Gomes, Carlos Toshiyuki Hiranobe, Renivaldo José Santos, Leandro Ferreira Pinto, Michael Jones Silva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
