Caracterização Morfológica, Elétrica e Mecânica de um Compósito Trifásico Sustentável à Base de Borracha Natural, Resíduo de Couro e Partículas de PZT
DOI:
https://doi.org/10.33448/rsd-v14i10.49793Palavras-chave:
Compósitos piezoelétricos, Borracha natural, Resíduo de couro, PZT, Propriedades elétricas e mecânicas.Resumo
O objetivo deste estudo é avaliar as propriedades morfológicas e elétricas de um compósito feito de borracha natural vulcanizada (VNR) reforçada com partículas de PZT e resíduo de couro (LR). Os materiais foram processados usando um método simples de mistura de rolo paralelos aberto, mantendo proporções constantes de borracha natural e resíduo LR, enquanto variava o teor de PZT em 25 e 50 phr. A microscopia eletrônica de varredura revelou dispersão homogênea de LR e partículas de PZT dentro da matriz de VNR, sem aglomerações visíveis, confirmando a eficácia do processo de mistura. As análises de impedância elétrica indicaram que todos os compósitos exibiram condutividade dependente da frequência, uma característica de materiais sólidos desordenados. Amostras contendo maiores concentrações de PZT mostraram aumento da condutividade em baixas frequências, principalmente devido ao movimento do dipolo dentro da fase cerâmica. A permissividade dielétrica e a capacitância também diminuíram com o aumento da frequência, enquanto o compósito com 50 phr de PZT apresentou a maior constante dielétrica e capacidade de armazenamento de energia. Testes mecânicos demonstraram que a inclusão de LR aumentou a resistência à tração e reduziu o alongamento na ruptura, atuando como um reforço fibroso. A adição de partículas de PZT aumentou a rigidez, resultando em um comportamento ligeiramente mais frágil. O compósito trifásico VNR-LR/PZT com 50 phr PZT alcançou o melhor equilíbrio entre resistência mecânica e desempenho elétrico. No geral, os resultados confirmam que o compósito desenvolvido apresenta um comportamento multifuncional promissor, adequado para aplicações de sensoriamento piezoelétrico e coleta de energia. Além disso, a reutilização de resíduos de couro oferece uma alternativa ambientalmente responsável, convertendo um resíduo industrial em um material funcional e de alto valor, com benefícios tecnológicos e ecológicos.
Referências
Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., Al-Gehlani, W. A. G., & Alrawaf, T. I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. International Journal of Environmental Research and Public Health, 19(19), 12717. https://doi.org/10.3390/ijerph191912717
Araújo, S. S., Santos, G. T. A., Tolosa, G. R., Hiranobe, C. T., Budemberg, E. R., Cabrera, F. C., Silva, M. J. da, Paim, L. L., Job, A. E., & Santos, R. J. dos. (2023). Acai Residue as an Ecologic Filler to Reinforcement of Natural Rubber Biocomposites. Materials Research, 26(suppl 1). https://doi.org/10.1590/1980-5373-mr-2022-0505
Arnau, A., & Soares, D. (2009). Fundamentals of Piezoelectricity. Em Piezoelectric Transducers and Applications (p. 1–38). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77508-9_1
Bowen, C. R., Topolov, V. Yu., & Kim, H. A. (2016). Modern Piezoelectric Energy-Harvesting Materials (Vol. 238). Springer International Publishing. https://doi.org/10.1007/978-3-319-29143-7
Callister, W. D. (1991). Materials science and engineering: An introduction (2nd edition). Materials & Design. https://doi.org/10.1016/0261-3069(91)90101-9
Cavalcante, D. G. S. M., Gomes, A. S., Santos, R. J., Kerche-Silva, L. E., Danna, C. S., Yoshihara, E., & Job, A. E. (2018). Composites Produced from Natural Rubber and Chrome-Tanned Leather Wastes: Evaluation of their In Vitro Toxicological Effects for Application in Footwear and Textile Industries. Journal of Polymers and the Environment, 26(3), 980–988. https://doi.org/10.1007/s10924-017-1002-9
Cavalcante, D. G. S. M. S. M., Gomes, A. S., Dos Reis, E. A. P., Danna, C. S., Kerche-Silva, L. E., Yoshihara, E., Job, A. E., Ap, E., Danna, C. S., Silva, L. E. K., Yoshihara, E., & Job, A. E. (2017). In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications. Toxicology and Industrial Health, 33(6), 478–486. https://doi.org/10.1177/0748233716674398
Costa, J. G. L., Rodrigues, P. H. F., Paim, L. L., Sanches, A. O., Malmonge, J. A., & Da Silva, M. J. (2020). 1-3 castor oil-based polyurethane/PZT piezoelectric composite as a possible candidate for structural health monitoring. Materials Research, 23(5), 1–9. https://doi.org/10.1590/1980-5373-MR-2020-0205
Covington, A. D., & Wise, W. R. (2020). Current trends in leather science. Journal of Leather Science and Engineering, 2(1), 28. https://doi.org/10.1186/s42825-020-00041-0
de Azevedo, C. G., dos Santos, R. J., Hiranobe, C. T., Zanette, A. F., Job, A. E., & Silva, M. J. (2023). The invasive Egeria densa macrophyte and its potential as a new renewable energy source: A study of degradation kinetics and thermodynamic parameters. Science of The Total Environment, 856, 158979. https://doi.org/10.1016/j.scitotenv.2022.158979
De Campos Fuzari, G., Orlandi, M. O., Longo, E., Melo, W. L. D. B., & Sakamoto, W. K. (2013). Effect of controlled conductivity on thermal sensing property of 0-3 pyroelectric composite. Smart Materials and Structures. https://doi.org/10.1088/0964-1726/22/2/025015
Freire Filho, F. C. M., Santos, J. A., Sanches, A. O., Medeiros, E. S., Malmonge, J. A., & Silva, M. J. (2023). Dielectric, electric, and piezoelectric properties of three‐phase piezoelectric composite based on castor‐oil polyurethane, lead zirconate titanate particles and multiwall carbon nanotubes. Journal of Applied Polymer Science, 140(9). https://doi.org/10.1002/app.53572
Furukawa, T. (1989). Piezoelectricity and pyroelectricity in polymers. IEEE Transactions on Electrical Insulation, 24(3), 375–394. https://doi.org/10.1109/14.30878
Ghosh, A. K., & Dwivedi, M. (2020). Advantages and Applications of Polymeric Composites. Em Processability of Polymeric Composites (p. 29–57). Springer India. https://doi.org/10.1007/978-81-322-3933-8_2
Gong, Y., Liu, X., Huang, L., & Chen, W. (2010). Stabilization of chromium: An alternative to make safe leathers. Journal of Hazardous Materials, 179(1–3), 540–544. https://doi.org/10.1016/j.jhazmat.2010.03.037
Jackson, N., Mathewson, A., Ramadan, K. S., Sameoto, D., & Evoy, S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3). https://doi.org/10.1088/0964-1726/23/3/033001
Katsumi, W., Fuzari Jr, G. de C., Aparecida, M., & de Freitas, R. L. B. (2011). Lead Titanate-Based Nanocomposite: Fabrication, Characterization and Application and Energy Conversion Evaluation. Em Ferroelectrics - Material Aspects. https://doi.org/10.5772/18238
Malmonge, J. A., Malmonge, L. F., Fuzari, G. C., Malmonge, S. M., & Sakamoto, W. K. (2009). Piezo and dielectric properties of PHB-PZT composite. Polymer Composites. https://doi.org/10.1002/pc.20719
Patsidis, A., & Psarras, G. C. (2008). Dielectric behaviour and functionality of polymer matrix - Ceramic BaTiO 3 composites. Express Polymer Letters, 2(10), 718–726. https://doi.org/10.3144/expresspolymlett.2008.85
Rebeque, P. V., Silva, M. J., Cena, C. R., Nagashima, H. N., Malmonge, J. A., & Kanda, D. H. F. (2019). Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polymer Composites, 40(1), 7–15. https://doi.org/10.1002/pc.24588
Rhodes, S. M. (2007). Electrically conductive polymer composites. December, 1–250.
Riaz, U., & Ashraf, S. M. (2013). Conductive Polymer Composites and Blends: Recent Trends. Em Nanostructured Polymer Blends. Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3159-6.00015-8
Ruiz, M. R., Budemberg, E. R., da Cunha, G. P., Bellucci, F. S., da Cunha, H. N., & Job, A. E. (2015). An innovative material based on natural rubber and leather tannery waste to be applied as antistatic flooring. Journal of Applied Polymer Science, 132(3), n/a-n/a. https://doi.org/10.1002/app.41297
Sampathkumar, P., Gowdhaman, P., Sundaram, S., & Annamalai, V. (2013). A Review on PZT-Polymer Composites : Dielectric and Piezoelectric Properties. NANO VISION.
Sanches, A. O., Kanda, D. H. F., Malmonge, L. F., da Silva, M. J., Sakamoto, W. K., & Malmonge, J. A. (2017). Synergistic effects on polyurethane/lead zirconate titanate/carbon black three-phase composites. Polymer Testing, 60, 253–259. https://doi.org/10.1016/j.polymertesting.2017.03.031
Santos, R. J., Agostini, D. L. S., Cabrera, F. C., Budemberg, E. R., & Job, A. E. (2015). Recycling leather waste: Preparing and studying on the microstructure, mechanical, and rheological properties of leather waste/rubber composite. Polymer Composites, 36(12). https://doi.org/10.1002/pc.23140
Sivaram, N. M., & Barik, D. (2019). Toxic Waste From Leather Industries. Em Energy from Toxic Organic Waste for Heat and Power Generation (p. 55–67). Elsevier. https://doi.org/10.1016/B978-0-08-102528-4.00005-5
Tyagi, S., Garg, N., & Paudel, R. (2014). Environmental Degradation: Causes and Consequences. European Researcher, 81(8–2), 1491. https://doi.org/10.13187/er.2014.81.1491
Venkatragavaraj, E., Satish, B., Vinod, P. R., & Vijaya, M. S. (2001). Piezoelectric properties of ferroelectric PZT-polymer composites. Journal of Physics D: Applied Physics. https://doi.org/10.1088/0022-3727/34/4/308
Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21(1), 55–80. https://doi.org/10.1007/s10311-022-01499-6
Yang, Z., Zeng, D., Wang, H., Zhao, C., & Tan, J. (2015). Harvesting ultrasonic energy using 1-3 piezoelectric composites. Smart Materials and Structures, 24(7). https://doi.org/10.1088/0964-1726/24/7/075029
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Raquel Laina Barbosa dos Santos, Hellinton dos Santos, Diego Silva de Melo, Nuelson Carlitos Gomes, Carlos Toshiyuki Hiranobe, Renivaldo José Santos, Leandro Ferreira Pinto, Michael Jones Silva

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
