Glass Ionomer Cement: Bioactivity and anticariogenic action
DOI:
https://doi.org/10.33448/rsd-v14i11.50076Keywords:
Dental Caries Activity Tests, Glass Ionomer Cements, Dental Caries Susceptibility.Abstract
Objective: The main objective of this study is to measure, through a bibliographic review, the anticariogenic power of Glass Ionomer Cement, a dental material widely used in dentistry. Materials and methods: The methodology employed was na integrative literature review based on materials attached to the Scientific Electronic Library Online (SciELO), Cochrane, and USA National Library of Medicine (PubMed) and Virtual Health Library (VHL) databases, using the keywords “Glass Ionomer Cements, Dental Caries Activity Tests, Dental Caries Susceptibility”, using publications published between 2015 and 2015. Results: Initially, 185 studies were found, but after passing the eligibility criteria, 7 remained to compose the present work. When analyzing the publications, it was found that GIC is a potentially anticariogenic compound due to its antimicrobial activities in dental tissue, it favors the remineralization of dental tissue and exerts cariostatic action. Final considerations: It was possible to observe that the mentioned dental material acts as a bioactive in dental caries, it has the capacity to release fluoride, being associated with the control of the extension of dental caries, as it is a versatile material it can be associated with the use of composite resin for better results.
References
Ana, I. D., & Anggraeni, R. (2021). Development of bioactive resin-modified glass ionomer cement for dental biomedical applications. Heliyon, 7(5), e05944. https://doi.org/10.1016/j.heliyon.2021.e05944
Aguilar-Pérez, D., Vargas-Coronado, R., Cervantes-U., J. M., Rodríguez-Fuentes, N., Aparicio, C., Covarrubias, C., Álvarez-Pérez, M., García-Pérez, V., Martínez-Hernández, M., & Cauich-Rodríguez, J. V. (2020). Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dental Materials Journal, 39(3), 389–396. https://doi.org/10.4012/dmj.2019-046
Aguilar-Pérez, D. A., Torres-González, R., Acosta-Torres, L. S., & Patiño-Marín, N. (2023). Effect of propolis incorporation on the mechanical and antimicrobial properties of glass ionomer cements: A review and experimental evaluation. Materials, 16(3), 1227. https://doi.org/10.3390/ma16031227
Altunsoy, M., Tanrıver, M., Türkan, U., Uslu, M. E., & Silici, S. (2016).
In vitro evaluation of microleakage and microhardness of ethanolic extracts of propolis in different proportions added to glass ionomer cement. Journal of Clinical Pediatric Dentistry, 40(2), 136–140. https://doi.org/10.17796/1053-4628-40.2.136
Bao, X., Liu, F., & He, J. (2021). Mechanical properties and water-aging resistance of glass ionomer cements reinforced with 3-aminopropyltriethoxysilane treated basalt fibers. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104369. https://doi.org/10.1016/j.jmbbm.2021.104369
Benson, T. L., Sogi, S., Jain, M., Shahi, P., Dhir, S., & Shaju, J. C. (2024). Comparative evaluation of microhardness and solubility of different combinations of antibiotic powders added to glass ionomer cement: Na in vitro study. International Journal of Clinical Pediatric Dentistry, 17(6), 619–624. https://doi.org/10.5005/jp-journals-10005-2850
Binas Junior, L. V., Barros, A. K. C., Silva, L. H. V., Gaia, L. G. T. M., Binas, Í. W. V., & Mendonça, I. C. G. (2022). Cimento de ionômero de vidro: revisão de literatura. Brazilian Journal of Health Review, 5(2), –. https://doi.org/10.34119/bjhrv5n2-257
Chen, J., Li, X., & Wang, Y., et al. (2020). Antibacterial and mechanical properties of reduced graphene–silver nanoparticle nanocomposite modified glass ionomer cements. Journal of Dentistry, 96, 103332. https://doi.org/10.1016/j.jdent.2020.103332
Cruz, N., Miglani, R., Indira, R., Poorni, S., Srinivasan, M. R., Robaian, A., Albar, N. H. M., Alhaidary, S. F. R., Binalrimal, S., Almalki, A., Vinothukmar, T. S., Dewan, H., Radawan, W., Mirza, M. B. M., Bhandi, S., & Patil, S. (2022). Evaluation of fluoride release in chitosan-modified glass ionomer cements. International Dental Journal, 72, 785–791. https://doi.org/10.1016/j.identj.2022.05.005
Dubey, N., Rajan, S. S., Bello, Y. D., Min, K.-S., & Rosa, V. (2017). Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements. Journal Materials, 10(6), 606. https://doi.org/10.3390/ma10060606
De Morais Sampaio, G. A., de Sousa, F. F., Silva, R. A., & Carvalho, F. G. (2021).
Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. European Journal of Dentistry, 15(2), 189–195. https://doi.org/10.1055/s-0040-1719159
El-Wassefy, N. A., El-Mahdy, R. H., & El-Kholany, N. R. (2017). Antibacterial activity and mechanical properties of glass ionomer cement incorporated with silver nanoparticles and chlorhexidine. Journal of Esthetic and Restorative Dentistry, 29(3), 207–214. https://doi.org/10.1111/jerd.12285
Fúcio, S. B., Paula, A. B. D., Sardi, J. C., Duque, C., Correr-Sobrinho, L., & Puppin-Rontani, R. M. (2016). Streptococcus mutans biofilm influences on the antimicrobial properties of glass ionomer cements. Brazilian Dental Journal, 27(6), 681–687. https://doi.org/10.1590/0103-6440201600913
Garoushi, S., Vallittu, P. K., & Lassila, L. V. J. (2018). Effect of discontinuous glass microfibers on mechanical properties of glass ionomer cement. Biomaterial Investigations in Dentistry. https://doi.org/10.1080/23337931.2018.1491798
Garoushi, S., He, J., Vallittu, P. K., & Lassila, L. V. J. (2017). Hollow glass fibers in reinforcing glass ionomer cements. PubMed. Recuperado de https://pubmed.ncbi.nlm.nih.gov/27836115/
Geraldeli, S., de Almeida Maia Carvalho, L., de Souza Araújo, I. J., Guarda, M. B., Nascimento, M. M., Bertolo, M. V. L., Di Nizo, P. T., Sinhoreti, M. A. C., & McCarlie, V. W., Jr. (2021). Incorporation of arginine to commercial orthodontic light-cured resin cements—Physical, adhesive, and antibacterial properties. Materials, 14(16), 4391. https://doi.org/10.3390/ma1416439
Giannini, M. (2021). “Bioactivity” in restorative dentistry: Standing for the use of innovative materials to improve the longevity of restorations in routine dental practice. The Journal of Adhesive Dentistry, 23(2), 176–178.
Guo, T., Wang, D., & Gao, S. S. (2025). Efeito antibiofilme e mecanismo do cimento de ionômero de vidro modificado com nanofios de prata contra biofilme oral multiespécies. BMC Oral Health, 25, 160.https://doi.org/10.1186/s12903-025-05536-y
Guo, Q., Ma, L., Zhao, J., Xu, Y., & Zhang, L. (2023). Incorporation of silver nanowires into glass ionomer cement: antibacterial activity, mechanical properties, and color stability. Journal of Dentistry, 134, 104608. https://doi.org/10.1016/j.jdent.2023.104608
Hammouda, I. M. (2009). Reinforcement of conventional glass-ionomer restorative material with short glass fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 73–81. https://doi.org/10.1016/j.jmbbm.2008.04.002
Jowkar, Z., Fattah, Z., Ghanbarian, S., & Shafiei, F. (2020). The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. International Journal of Nanomedicine, 15, 4755–4762. https://doi.org/10.2147/IJN.S262664
Kelsey, X. G., Ryan, Q., Chu, C.-H., & Yu, O. Y. (2023). Efeito preventivo das restaurações de cimento de ionômero de vidro na formação de cáries secundárias: uma revisão sistemática e meta-análise. Materiais Dentários, 39 (12), e1–e17. https://doi.org/10.1016/j.dental.2023.10.008
Marakby, A., El-Sharkawy, F. M., & Hassan, H. A. (2017). Evaluation of anti-cariogenic properties among four types of glass ionomer cements. Journal of Oral Dental Health, 1(1), 1–5.
Medeiros, F. L., Dias, B. A. S., Silva, G. C. B., Mendes, J. L., Alves, L. N. S., & Vasconcelos, M. G. (2021). The use and inter-relationship of compound resin and glass ionomer cement (GIC) in sandwich restorations. Research, Society and Development, 10(6). https://doi.org/10.33448/rsd-v10i6.15617
Mesquita, D. C. M., Reges, R. V., da Cruz Peres, L. E., Pereira, C. M., Alves, D. R. S., de Carvalho, R. M., & dos Santos, F. G. (2020). Perfilometria dimensional do cimento de ionômero de vidro frente aos diferentes pH e tempos de armazenamento. Revista Ciências e Odontologia, 4(2), 44–50
Morales-Chávez, M. C., & Nualart-Grollmus, Z. C. (2014). Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs. Journal of Clinical and Experimental Dentistry, 6(5), e551–e555. https://doi.org/10.4317/jced.51688
Muniz, A. B., Bessa, E. R. L., de Holanda, M. A. R., Damasceno, A. G. R. L., de Souza Júnior, P. R. P., da Silva Melo, É. C., & Beiruth, C. P. (2020). Cimento de ionômero de vidro em odontopediatria: Revisão narrativa. Revista Eletrônica Acervo Saúde, 12(10), e3853. https://doi.org/10.25248/reas.e3853.2020
Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2023). Fluoride exchange by glass-ionomer dental cements and its clinical effects: A review. Biomaterial Investigations in Dentistry, 10 (1), 1–12. https://doi.org/10.1080/26415275.2023.2244982
Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2020). Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials, 13(11), 2510. https://doi.org/10.3390/ma13112510
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Pereira, M. E. C., Felix, E. C., Carvalho Filho, E. M., Bezerra, E. S. O. R., Ferreira, K. G., Reis, S. S., & Schott, O. A. S. (2022). A importância do cimento de ionômero de vidro no atendimento odontológico. In VIII Seminário Científico do Unifacig, 27–28 out. https://share.google/1osJC05NbEaioL6eg
Poornima, P., Koley, P., Kenchappa, M., Nagaveni, N. B., Bharath, K. P., & Neena, I. E. (2019). Comparative evaluation of compressive strength and surface microhardness of EQUIA Forte, resin-modified glass-ionomer cement with conventional glass-ionomer cement. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(3), 265–270. https://doi.org/10.4103/JISPPD.JISPPD_342_18
Prabhakar, A. R., Balehosur, D. V., & Basappa, N. (2016). Comparative evaluation of shear bond strength and fluoride release of conventional glass ionomer with 1% ethanolic extract of propolis incorporated glass ionomer cement—Na in vitro study. Journal of Clinical and Diagnostic Research, 10(5), ZC88–ZC91. https://doi.org/10.7860/JCDR/2016/19220.7871
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Sari, F., & Ugurlu, M. (2023). Reforço de cimento de ionômero de vidro modificado por resina com fibra de vidro e óxido de grafeno. Revista de Comportamento Mecânico de Materiais Biomédicos, 142. https://doi.org/10.1016/j.jmbbm.2023.105850
Sidhu, S. K., & Nicholson, J. W. (2016). A review of glass-ionomer cements for clinical dentistry. Journal of Functional Biomaterials, 7 (16), 1–15.
(https://www.mdpi.com/2079-4983/7/3/16)
Silva, B. A. C., Silva, E. B. V., Moraes, R. A., Santos, R. S., Soares, A. F., & Vieira, I. M. (2024). Novas formulações e perspectivas futuras do cimento de ionômero de vidro: uma revisão narrativa. Research, Society and Development, 13 (11). http://dx.doi.org/10.33448/rsd-v13i11.47401
Silva, D. O. C., Silva, I. M., Rocha, A. O., Anjos, L. M., Lima, T. O., Santos, R. M. dos A., & Cruz, B. P. (2021). Cimento de ionômero de vidro e sua aplicabilidade na odontologia: uma revisão narrativa com ênfase em suas propriedades. Research, Society and Development, 10 (5).
http://dx.doi.org/10.33448/rsd-v10i5.14884
Silva, R. C. S., & Zuanon, A. C. C. (2005). Evaluation of the antimicrobial activity of glass ionomer cements modified by silver nitrate and chlorhexidine. Brazilian Dental Journal, 16(2), 103–107. https://doi.org/10.1590/S0103-64402005000200004
Spezzia, S. (2017). Cimento de ionômero de vidro: Revisão de literatura. Journal of Oral Investigations, 6(2), 74.
Srikurmam, M., Shetty, S. S., Mehta, V., Rizawan, S. A., & Ainda, M. (2023). A comprehensive evaluation of zirconia-reinforced glass ionomer cement’s effectiveness in dental caries: A systematic review and network meta-analysis. Dent J (Basel), 11 (9).
https://doi.org/10.3390/dj11090211
Subramaniam, P., Girish Babu, K. L., Neeraja, G., & Pillai, S. (2017).
Does addition of propolis to glass ionomer cement alter its physicomechanical properties? Na in vitro study. Journal of Clinical Pediatric Dentistry, 41(1), 62–65. https://doi.org/10.17796/1053-4628-41.1.62
Sundeep, D., Vijaya Kumar, T., Rao, P. S., Ravikumar, R. V. S. S. N., & Gopala Krishna, A. (2017). Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Progress in Biomaterials, 6, 57-66. https://doi.org/10.1007/s40204-017-0067-9
Sun, L., Yan, Z., Duan, Y., Zhang, J., & Liu, B. (2018). Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Journal Dental Materials, 34(6), e115–e127. https://doi.org/10.1016/j.dental.2018.02.006
Tada, A., Nakayama-Imaohji, H., Yamasaki, H., Hasibul, K., Yoneda, S., Uchida, K., Nariya, H., Suzuki, M., Miyake, M., & Kuwahara, T. (2016). Cleansing effect of acidic L-arginine on human oral biofilm. BMC Oral Health, 16, 40. https://doi.org/10.1186/s12903-016-0194-z
Tanaka, C. B., Ershad, F., Ellakwa, A., & Kruzic, J. J. (2020). Fiber reinforcement of a resin-modified glass ionomer cement. Journal Dental Materials, 36(12), 1516-1523. https://doi.org/10.1016/j.dental.2020.09.003
Uzel, I., Gurleck, C., Kuter, B., Ertugrul, F., & Eden, E. (2022). Efeito preventivo de cáries e retenção de selantes à base de ionômero de vidro e resina: uma avaliação clínica comparativa randomizada. BioMed Research International, 2022, 7 páginas.
https://doi.org/10.1155/2022/7205692
Vallittu, P. K., Boaccaccini, A. R., Hupa, L., & Watts, D. C. (2018). Materiais dentários bioativos — Eles existem e o que significa bioatividade? Materiais Dentários, 34 (5), 693–694. https://doi.org/10.1016/j.dental.2018.03.001
Wassel, M. O., & Allam, G. G. (2022). Anti-bacterial effect, fluoride release, and compressive strength of a glass ionomer containing silver and titanium nanoparticles. Indian Journal of Dental Research, 33 (1), 75–79. https://doi.org/10.4103/ijdr.IJDR_117_20
Yamakami, S. A., Ubaldini, A. L., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26. https://doi.org/10.1590/1678-7757-2017-0384
Zhang, Y., et al. (2025). A scoping review of hydroxyapatite-modified glass ionomer cements used for restorative dentistry. Journal of Dentistry, 163.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Edmila Santos Silva, Larissa Silva Oliveira Alves, Raissa Rodrigues Lima, Sofia Silva Batista, Ian Matos Vieira, Ana Flávia Soares

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
