Cemento de Ionómero de Vidrio: Bioactividad y acción anticariogénica

Autores/as

DOI:

https://doi.org/10.33448/rsd-v14i11.50076

Palabras clave:

Cementos de Ionómero de Vidrio, Pruebas de Actividad Cariogénica, Susceptibilidad a la Caries Dental.

Resumen

Objetivo: El objetivo principal de este estudio es evaluar, mediante uma revisión bibliográfica, el potencial anticariogénico del cemento de ionómero de vidrio (CIV), um material dental ampliamente utilizado em odontología. Metodología: Se realizó uma revisión bibliográfica integrativa basada em materiales de las bases de datos SciELO, Cochrane, PubMed (Biblioteca Nacional de Medicina de EE. UU.) y BVS (Biblioteca Virtual em Salud), utilizando las palabras clave “Cementos de ionómero de vidrio”, “Pruebas de actividad cariogénica” y “Susceptibilidad a la caries dental”, com publicaciones entre 2015 y 2016. Resultados: Inicialmente se encontraron 185 estudios, de los cuales 7, tras cumplir los criterios de elegibilidad, conformaron este trabajo. El análisis de las publicaciones mostró que el CIV es um compuesto potencialmente anticariogénico debido a su actividad antimicrobiana em el tejido dental; favorece la remineralización del tejido dental y ejerce uma acción cariostática. Conclusión: Se observó que el material dental citado actúa como agente bioactivo em la caries dental. Tiene la capacidad de liberar fluoruro, controlando así la extensión de la caries. Al ser um material versátil, puede combinarse com resina compuesta para obtener mejores resultados.

Referencias

Ana, I. D., & Anggraeni, R. (2021). Development of bioactive resin-modified glass ionomer cement for dental biomedical applications. Heliyon, 7(5), e05944. https://doi.org/10.1016/j.heliyon.2021.e05944

Aguilar-Pérez, D., Vargas-Coronado, R., Cervantes-U., J. M., Rodríguez-Fuentes, N., Aparicio, C., Covarrubias, C., Álvarez-Pérez, M., García-Pérez, V., Martínez-Hernández, M., & Cauich-Rodríguez, J. V. (2020). Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dental Materials Journal, 39(3), 389–396. https://doi.org/10.4012/dmj.2019-046

Aguilar-Pérez, D. A., Torres-González, R., Acosta-Torres, L. S., & Patiño-Marín, N. (2023). Effect of propolis incorporation on the mechanical and antimicrobial properties of glass ionomer cements: A review and experimental evaluation. Materials, 16(3), 1227. https://doi.org/10.3390/ma16031227

Altunsoy, M., Tanrıver, M., Türkan, U., Uslu, M. E., & Silici, S. (2016).

In vitro evaluation of microleakage and microhardness of ethanolic extracts of propolis in different proportions added to glass ionomer cement. Journal of Clinical Pediatric Dentistry, 40(2), 136–140. https://doi.org/10.17796/1053-4628-40.2.136

Bao, X., Liu, F., & He, J. (2021). Mechanical properties and water-aging resistance of glass ionomer cements reinforced with 3-aminopropyltriethoxysilane treated basalt fibers. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104369. https://doi.org/10.1016/j.jmbbm.2021.104369

Benson, T. L., Sogi, S., Jain, M., Shahi, P., Dhir, S., & Shaju, J. C. (2024). Comparative evaluation of microhardness and solubility of different combinations of antibiotic powders added to glass ionomer cement: Na in vitro study. International Journal of Clinical Pediatric Dentistry, 17(6), 619–624. https://doi.org/10.5005/jp-journals-10005-2850

Binas Junior, L. V., Barros, A. K. C., Silva, L. H. V., Gaia, L. G. T. M., Binas, Í. W. V., & Mendonça, I. C. G. (2022). Cimento de ionômero de vidro: revisão de literatura. Brazilian Journal of Health Review, 5(2), –. https://doi.org/10.34119/bjhrv5n2-257

Chen, J., Li, X., & Wang, Y., et al. (2020). Antibacterial and mechanical properties of reduced graphene–silver nanoparticle nanocomposite modified glass ionomer cements. Journal of Dentistry, 96, 103332. https://doi.org/10.1016/j.jdent.2020.103332

Cruz, N., Miglani, R., Indira, R., Poorni, S., Srinivasan, M. R., Robaian, A., Albar, N. H. M., Alhaidary, S. F. R., Binalrimal, S., Almalki, A., Vinothukmar, T. S., Dewan, H., Radawan, W., Mirza, M. B. M., Bhandi, S., & Patil, S. (2022). Evaluation of fluoride release in chitosan-modified glass ionomer cements. International Dental Journal, 72, 785–791. https://doi.org/10.1016/j.identj.2022.05.005

Dubey, N., Rajan, S. S., Bello, Y. D., Min, K.-S., & Rosa, V. (2017). Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements. Journal Materials, 10(6), 606. https://doi.org/10.3390/ma10060606

De Morais Sampaio, G. A., de Sousa, F. F., Silva, R. A., & Carvalho, F. G. (2021).

Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. European Journal of Dentistry, 15(2), 189–195. https://doi.org/10.1055/s-0040-1719159

El-Wassefy, N. A., El-Mahdy, R. H., & El-Kholany, N. R. (2017). Antibacterial activity and mechanical properties of glass ionomer cement incorporated with silver nanoparticles and chlorhexidine. Journal of Esthetic and Restorative Dentistry, 29(3), 207–214. https://doi.org/10.1111/jerd.12285

Fúcio, S. B., Paula, A. B. D., Sardi, J. C., Duque, C., Correr-Sobrinho, L., & Puppin-Rontani, R. M. (2016). Streptococcus mutans biofilm influences on the antimicrobial properties of glass ionomer cements. Brazilian Dental Journal, 27(6), 681–687. https://doi.org/10.1590/0103-6440201600913

Garoushi, S., Vallittu, P. K., & Lassila, L. V. J. (2018). Effect of discontinuous glass microfibers on mechanical properties of glass ionomer cement. Biomaterial Investigations in Dentistry. https://doi.org/10.1080/23337931.2018.1491798

Garoushi, S., He, J., Vallittu, P. K., & Lassila, L. V. J. (2017). Hollow glass fibers in reinforcing glass ionomer cements. PubMed. Recuperado de https://pubmed.ncbi.nlm.nih.gov/27836115/

Geraldeli, S., de Almeida Maia Carvalho, L., de Souza Araújo, I. J., Guarda, M. B., Nascimento, M. M., Bertolo, M. V. L., Di Nizo, P. T., Sinhoreti, M. A. C., & McCarlie, V. W., Jr. (2021). Incorporation of arginine to commercial orthodontic light-cured resin cements—Physical, adhesive, and antibacterial properties. Materials, 14(16), 4391. https://doi.org/10.3390/ma1416439

Giannini, M. (2021). “Bioactivity” in restorative dentistry: Standing for the use of innovative materials to improve the longevity of restorations in routine dental practice. The Journal of Adhesive Dentistry, 23(2), 176–178.

Guo, T., Wang, D., & Gao, S. S. (2025). Efeito antibiofilme e mecanismo do cimento de ionômero de vidro modificado com nanofios de prata contra biofilme oral multiespécies. BMC Oral Health, 25, 160.https://doi.org/10.1186/s12903-025-05536-y

Guo, Q., Ma, L., Zhao, J., Xu, Y., & Zhang, L. (2023). Incorporation of silver nanowires into glass ionomer cement: antibacterial activity, mechanical properties, and color stability. Journal of Dentistry, 134, 104608. https://doi.org/10.1016/j.jdent.2023.104608

Hammouda, I. M. (2009). Reinforcement of conventional glass-ionomer restorative material with short glass fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 73–81. https://doi.org/10.1016/j.jmbbm.2008.04.002

Jowkar, Z., Fattah, Z., Ghanbarian, S., & Shafiei, F. (2020). The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. International Journal of Nanomedicine, 15, 4755–4762. https://doi.org/10.2147/IJN.S262664

Kelsey, X. G., Ryan, Q., Chu, C.-H., & Yu, O. Y. (2023). Efeito preventivo das restaurações de cimento de ionômero de vidro na formação de cáries secundárias: uma revisão sistemática e meta-análise. Materiais Dentários, 39 (12), e1–e17. https://doi.org/10.1016/j.dental.2023.10.008

Marakby, A., El-Sharkawy, F. M., & Hassan, H. A. (2017). Evaluation of anti-cariogenic properties among four types of glass ionomer cements. Journal of Oral Dental Health, 1(1), 1–5.

Medeiros, F. L., Dias, B. A. S., Silva, G. C. B., Mendes, J. L., Alves, L. N. S., & Vasconcelos, M. G. (2021). The use and inter-relationship of compound resin and glass ionomer cement (GIC) in sandwich restorations. Research, Society and Development, 10(6). https://doi.org/10.33448/rsd-v10i6.15617

Mesquita, D. C. M., Reges, R. V., da Cruz Peres, L. E., Pereira, C. M., Alves, D. R. S., de Carvalho, R. M., & dos Santos, F. G. (2020). Perfilometria dimensional do cimento de ionômero de vidro frente aos diferentes pH e tempos de armazenamento. Revista Ciências e Odontologia, 4(2), 44–50

Morales-Chávez, M. C., & Nualart-Grollmus, Z. C. (2014). Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs. Journal of Clinical and Experimental Dentistry, 6(5), e551–e555. https://doi.org/10.4317/jced.51688

Muniz, A. B., Bessa, E. R. L., de Holanda, M. A. R., Damasceno, A. G. R. L., de Souza Júnior, P. R. P., da Silva Melo, É. C., & Beiruth, C. P. (2020). Cimento de ionômero de vidro em odontopediatria: Revisão narrativa. Revista Eletrônica Acervo Saúde, 12(10), e3853. https://doi.org/10.25248/reas.e3853.2020

Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2023). Fluoride exchange by glass-ionomer dental cements and its clinical effects: A review. Biomaterial Investigations in Dentistry, 10 (1), 1–12. https://doi.org/10.1080/26415275.2023.2244982

Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2020). Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials, 13(11), 2510. https://doi.org/10.3390/ma13112510

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.

Pereira, M. E. C., Felix, E. C., Carvalho Filho, E. M., Bezerra, E. S. O. R., Ferreira, K. G., Reis, S. S., & Schott, O. A. S. (2022). A importância do cimento de ionômero de vidro no atendimento odontológico. In VIII Seminário Científico do Unifacig, 27–28 out. https://share.google/1osJC05NbEaioL6eg

Poornima, P., Koley, P., Kenchappa, M., Nagaveni, N. B., Bharath, K. P., & Neena, I. E. (2019). Comparative evaluation of compressive strength and surface microhardness of EQUIA Forte, resin-modified glass-ionomer cement with conventional glass-ionomer cement. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(3), 265–270. https://doi.org/10.4103/JISPPD.JISPPD_342_18

Prabhakar, A. R., Balehosur, D. V., & Basappa, N. (2016). Comparative evaluation of shear bond strength and fluoride release of conventional glass ionomer with 1% ethanolic extract of propolis incorporated glass ionomer cement—Na in vitro study. Journal of Clinical and Diagnostic Research, 10(5), ZC88–ZC91. https://doi.org/10.7860/JCDR/2016/19220.7871

Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.

Sari, F., & Ugurlu, M. (2023). Reforço de cimento de ionômero de vidro modificado por resina com fibra de vidro e óxido de grafeno. Revista de Comportamento Mecânico de Materiais Biomédicos, 142. https://doi.org/10.1016/j.jmbbm.2023.105850

Sidhu, S. K., & Nicholson, J. W. (2016). A review of glass-ionomer cements for clinical dentistry. Journal of Functional Biomaterials, 7 (16), 1–15.

(https://www.mdpi.com/2079-4983/7/3/16)

Silva, B. A. C., Silva, E. B. V., Moraes, R. A., Santos, R. S., Soares, A. F., & Vieira, I. M. (2024). Novas formulações e perspectivas futuras do cimento de ionômero de vidro: uma revisão narrativa. Research, Society and Development, 13 (11). http://dx.doi.org/10.33448/rsd-v13i11.47401

Silva, D. O. C., Silva, I. M., Rocha, A. O., Anjos, L. M., Lima, T. O., Santos, R. M. dos A., & Cruz, B. P. (2021). Cimento de ionômero de vidro e sua aplicabilidade na odontologia: uma revisão narrativa com ênfase em suas propriedades. Research, Society and Development, 10 (5).

http://dx.doi.org/10.33448/rsd-v10i5.14884

Silva, R. C. S., & Zuanon, A. C. C. (2005). Evaluation of the antimicrobial activity of glass ionomer cements modified by silver nitrate and chlorhexidine. Brazilian Dental Journal, 16(2), 103–107. https://doi.org/10.1590/S0103-64402005000200004

Spezzia, S. (2017). Cimento de ionômero de vidro: Revisão de literatura. Journal of Oral Investigations, 6(2), 74.

Srikurmam, M., Shetty, S. S., Mehta, V., Rizawan, S. A., & Ainda, M. (2023). A comprehensive evaluation of zirconia-reinforced glass ionomer cement’s effectiveness in dental caries: A systematic review and network meta-analysis. Dent J (Basel), 11 (9).

https://doi.org/10.3390/dj11090211

Subramaniam, P., Girish Babu, K. L., Neeraja, G., & Pillai, S. (2017).

Does addition of propolis to glass ionomer cement alter its physicomechanical properties? Na in vitro study. Journal of Clinical Pediatric Dentistry, 41(1), 62–65. https://doi.org/10.17796/1053-4628-41.1.62

Sundeep, D., Vijaya Kumar, T., Rao, P. S., Ravikumar, R. V. S. S. N., & Gopala Krishna, A. (2017). Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Progress in Biomaterials, 6, 57-66. https://doi.org/10.1007/s40204-017-0067-9

Sun, L., Yan, Z., Duan, Y., Zhang, J., & Liu, B. (2018). Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Journal Dental Materials, 34(6), e115–e127. https://doi.org/10.1016/j.dental.2018.02.006

Tada, A., Nakayama-Imaohji, H., Yamasaki, H., Hasibul, K., Yoneda, S., Uchida, K., Nariya, H., Suzuki, M., Miyake, M., & Kuwahara, T. (2016). Cleansing effect of acidic L-arginine on human oral biofilm. BMC Oral Health, 16, 40. https://doi.org/10.1186/s12903-016-0194-z

Tanaka, C. B., Ershad, F., Ellakwa, A., & Kruzic, J. J. (2020). Fiber reinforcement of a resin-modified glass ionomer cement. Journal Dental Materials, 36(12), 1516-1523. https://doi.org/10.1016/j.dental.2020.09.003

Uzel, I., Gurleck, C., Kuter, B., Ertugrul, F., & Eden, E. (2022). Efeito preventivo de cáries e retenção de selantes à base de ionômero de vidro e resina: uma avaliação clínica comparativa randomizada. BioMed Research International, 2022, 7 páginas.

https://doi.org/10.1155/2022/7205692

Vallittu, P. K., Boaccaccini, A. R., Hupa, L., & Watts, D. C. (2018). Materiais dentários bioativos — Eles existem e o que significa bioatividade? Materiais Dentários, 34 (5), 693–694. https://doi.org/10.1016/j.dental.2018.03.001

Wassel, M. O., & Allam, G. G. (2022). Anti-bacterial effect, fluoride release, and compressive strength of a glass ionomer containing silver and titanium nanoparticles. Indian Journal of Dental Research, 33 (1), 75–79. https://doi.org/10.4103/ijdr.IJDR_117_20

Yamakami, S. A., Ubaldini, A. L., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26. https://doi.org/10.1590/1678-7757-2017-0384

Zhang, Y., et al. (2025). A scoping review of hydroxyapatite-modified glass ionomer cements used for restorative dentistry. Journal of Dentistry, 163.

https://doi.org/10.1016/j.jdent.2025.106149

Publicado

2025-11-17

Número

Sección

Ciencias de la salud

Cómo citar

Cemento de Ionómero de Vidrio: Bioactividad y acción anticariogénica. Research, Society and Development, [S. l.], v. 14, n. 11, p. e133141150076, 2025. DOI: 10.33448/rsd-v14i11.50076. Disponível em: https://www.rsdjournal.org/rsd/article/view/50076. Acesso em: 5 dec. 2025.