Cemento de Ionómero de Vidrio: Bioactividad y acción anticariogénica
DOI:
https://doi.org/10.33448/rsd-v14i11.50076Palabras clave:
Cementos de Ionómero de Vidrio, Pruebas de Actividad Cariogénica, Susceptibilidad a la Caries Dental.Resumen
Objetivo: El objetivo principal de este estudio es evaluar, mediante uma revisión bibliográfica, el potencial anticariogénico del cemento de ionómero de vidrio (CIV), um material dental ampliamente utilizado em odontología. Metodología: Se realizó uma revisión bibliográfica integrativa basada em materiales de las bases de datos SciELO, Cochrane, PubMed (Biblioteca Nacional de Medicina de EE. UU.) y BVS (Biblioteca Virtual em Salud), utilizando las palabras clave “Cementos de ionómero de vidrio”, “Pruebas de actividad cariogénica” y “Susceptibilidad a la caries dental”, com publicaciones entre 2015 y 2016. Resultados: Inicialmente se encontraron 185 estudios, de los cuales 7, tras cumplir los criterios de elegibilidad, conformaron este trabajo. El análisis de las publicaciones mostró que el CIV es um compuesto potencialmente anticariogénico debido a su actividad antimicrobiana em el tejido dental; favorece la remineralización del tejido dental y ejerce uma acción cariostática. Conclusión: Se observó que el material dental citado actúa como agente bioactivo em la caries dental. Tiene la capacidad de liberar fluoruro, controlando así la extensión de la caries. Al ser um material versátil, puede combinarse com resina compuesta para obtener mejores resultados.
Referencias
Ana, I. D., & Anggraeni, R. (2021). Development of bioactive resin-modified glass ionomer cement for dental biomedical applications. Heliyon, 7(5), e05944. https://doi.org/10.1016/j.heliyon.2021.e05944
Aguilar-Pérez, D., Vargas-Coronado, R., Cervantes-U., J. M., Rodríguez-Fuentes, N., Aparicio, C., Covarrubias, C., Álvarez-Pérez, M., García-Pérez, V., Martínez-Hernández, M., & Cauich-Rodríguez, J. V. (2020). Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dental Materials Journal, 39(3), 389–396. https://doi.org/10.4012/dmj.2019-046
Aguilar-Pérez, D. A., Torres-González, R., Acosta-Torres, L. S., & Patiño-Marín, N. (2023). Effect of propolis incorporation on the mechanical and antimicrobial properties of glass ionomer cements: A review and experimental evaluation. Materials, 16(3), 1227. https://doi.org/10.3390/ma16031227
Altunsoy, M., Tanrıver, M., Türkan, U., Uslu, M. E., & Silici, S. (2016).
In vitro evaluation of microleakage and microhardness of ethanolic extracts of propolis in different proportions added to glass ionomer cement. Journal of Clinical Pediatric Dentistry, 40(2), 136–140. https://doi.org/10.17796/1053-4628-40.2.136
Bao, X., Liu, F., & He, J. (2021). Mechanical properties and water-aging resistance of glass ionomer cements reinforced with 3-aminopropyltriethoxysilane treated basalt fibers. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104369. https://doi.org/10.1016/j.jmbbm.2021.104369
Benson, T. L., Sogi, S., Jain, M., Shahi, P., Dhir, S., & Shaju, J. C. (2024). Comparative evaluation of microhardness and solubility of different combinations of antibiotic powders added to glass ionomer cement: Na in vitro study. International Journal of Clinical Pediatric Dentistry, 17(6), 619–624. https://doi.org/10.5005/jp-journals-10005-2850
Binas Junior, L. V., Barros, A. K. C., Silva, L. H. V., Gaia, L. G. T. M., Binas, Í. W. V., & Mendonça, I. C. G. (2022). Cimento de ionômero de vidro: revisão de literatura. Brazilian Journal of Health Review, 5(2), –. https://doi.org/10.34119/bjhrv5n2-257
Chen, J., Li, X., & Wang, Y., et al. (2020). Antibacterial and mechanical properties of reduced graphene–silver nanoparticle nanocomposite modified glass ionomer cements. Journal of Dentistry, 96, 103332. https://doi.org/10.1016/j.jdent.2020.103332
Cruz, N., Miglani, R., Indira, R., Poorni, S., Srinivasan, M. R., Robaian, A., Albar, N. H. M., Alhaidary, S. F. R., Binalrimal, S., Almalki, A., Vinothukmar, T. S., Dewan, H., Radawan, W., Mirza, M. B. M., Bhandi, S., & Patil, S. (2022). Evaluation of fluoride release in chitosan-modified glass ionomer cements. International Dental Journal, 72, 785–791. https://doi.org/10.1016/j.identj.2022.05.005
Dubey, N., Rajan, S. S., Bello, Y. D., Min, K.-S., & Rosa, V. (2017). Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements. Journal Materials, 10(6), 606. https://doi.org/10.3390/ma10060606
De Morais Sampaio, G. A., de Sousa, F. F., Silva, R. A., & Carvalho, F. G. (2021).
Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. European Journal of Dentistry, 15(2), 189–195. https://doi.org/10.1055/s-0040-1719159
El-Wassefy, N. A., El-Mahdy, R. H., & El-Kholany, N. R. (2017). Antibacterial activity and mechanical properties of glass ionomer cement incorporated with silver nanoparticles and chlorhexidine. Journal of Esthetic and Restorative Dentistry, 29(3), 207–214. https://doi.org/10.1111/jerd.12285
Fúcio, S. B., Paula, A. B. D., Sardi, J. C., Duque, C., Correr-Sobrinho, L., & Puppin-Rontani, R. M. (2016). Streptococcus mutans biofilm influences on the antimicrobial properties of glass ionomer cements. Brazilian Dental Journal, 27(6), 681–687. https://doi.org/10.1590/0103-6440201600913
Garoushi, S., Vallittu, P. K., & Lassila, L. V. J. (2018). Effect of discontinuous glass microfibers on mechanical properties of glass ionomer cement. Biomaterial Investigations in Dentistry. https://doi.org/10.1080/23337931.2018.1491798
Garoushi, S., He, J., Vallittu, P. K., & Lassila, L. V. J. (2017). Hollow glass fibers in reinforcing glass ionomer cements. PubMed. Recuperado de https://pubmed.ncbi.nlm.nih.gov/27836115/
Geraldeli, S., de Almeida Maia Carvalho, L., de Souza Araújo, I. J., Guarda, M. B., Nascimento, M. M., Bertolo, M. V. L., Di Nizo, P. T., Sinhoreti, M. A. C., & McCarlie, V. W., Jr. (2021). Incorporation of arginine to commercial orthodontic light-cured resin cements—Physical, adhesive, and antibacterial properties. Materials, 14(16), 4391. https://doi.org/10.3390/ma1416439
Giannini, M. (2021). “Bioactivity” in restorative dentistry: Standing for the use of innovative materials to improve the longevity of restorations in routine dental practice. The Journal of Adhesive Dentistry, 23(2), 176–178.
Guo, T., Wang, D., & Gao, S. S. (2025). Efeito antibiofilme e mecanismo do cimento de ionômero de vidro modificado com nanofios de prata contra biofilme oral multiespécies. BMC Oral Health, 25, 160.https://doi.org/10.1186/s12903-025-05536-y
Guo, Q., Ma, L., Zhao, J., Xu, Y., & Zhang, L. (2023). Incorporation of silver nanowires into glass ionomer cement: antibacterial activity, mechanical properties, and color stability. Journal of Dentistry, 134, 104608. https://doi.org/10.1016/j.jdent.2023.104608
Hammouda, I. M. (2009). Reinforcement of conventional glass-ionomer restorative material with short glass fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 73–81. https://doi.org/10.1016/j.jmbbm.2008.04.002
Jowkar, Z., Fattah, Z., Ghanbarian, S., & Shafiei, F. (2020). The effects of silver, zinc oxide, and titanium dioxide nanoparticles used as dentin pretreatments on the microshear bond strength of a conventional glass ionomer cement to dentin. International Journal of Nanomedicine, 15, 4755–4762. https://doi.org/10.2147/IJN.S262664
Kelsey, X. G., Ryan, Q., Chu, C.-H., & Yu, O. Y. (2023). Efeito preventivo das restaurações de cimento de ionômero de vidro na formação de cáries secundárias: uma revisão sistemática e meta-análise. Materiais Dentários, 39 (12), e1–e17. https://doi.org/10.1016/j.dental.2023.10.008
Marakby, A., El-Sharkawy, F. M., & Hassan, H. A. (2017). Evaluation of anti-cariogenic properties among four types of glass ionomer cements. Journal of Oral Dental Health, 1(1), 1–5.
Medeiros, F. L., Dias, B. A. S., Silva, G. C. B., Mendes, J. L., Alves, L. N. S., & Vasconcelos, M. G. (2021). The use and inter-relationship of compound resin and glass ionomer cement (GIC) in sandwich restorations. Research, Society and Development, 10(6). https://doi.org/10.33448/rsd-v10i6.15617
Mesquita, D. C. M., Reges, R. V., da Cruz Peres, L. E., Pereira, C. M., Alves, D. R. S., de Carvalho, R. M., & dos Santos, F. G. (2020). Perfilometria dimensional do cimento de ionômero de vidro frente aos diferentes pH e tempos de armazenamento. Revista Ciências e Odontologia, 4(2), 44–50
Morales-Chávez, M. C., & Nualart-Grollmus, Z. C. (2014). Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs. Journal of Clinical and Experimental Dentistry, 6(5), e551–e555. https://doi.org/10.4317/jced.51688
Muniz, A. B., Bessa, E. R. L., de Holanda, M. A. R., Damasceno, A. G. R. L., de Souza Júnior, P. R. P., da Silva Melo, É. C., & Beiruth, C. P. (2020). Cimento de ionômero de vidro em odontopediatria: Revisão narrativa. Revista Eletrônica Acervo Saúde, 12(10), e3853. https://doi.org/10.25248/reas.e3853.2020
Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2023). Fluoride exchange by glass-ionomer dental cements and its clinical effects: A review. Biomaterial Investigations in Dentistry, 10 (1), 1–12. https://doi.org/10.1080/26415275.2023.2244982
Nicholson, J. W., Sidhu, S. K., & Czarnecka, B. (2020). Enhancing the mechanical properties of glass-ionomer dental cements: a review. Materials, 13(11), 2510. https://doi.org/10.3390/ma13112510
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria. Editora da UFSM.
Pereira, M. E. C., Felix, E. C., Carvalho Filho, E. M., Bezerra, E. S. O. R., Ferreira, K. G., Reis, S. S., & Schott, O. A. S. (2022). A importância do cimento de ionômero de vidro no atendimento odontológico. In VIII Seminário Científico do Unifacig, 27–28 out. https://share.google/1osJC05NbEaioL6eg
Poornima, P., Koley, P., Kenchappa, M., Nagaveni, N. B., Bharath, K. P., & Neena, I. E. (2019). Comparative evaluation of compressive strength and surface microhardness of EQUIA Forte, resin-modified glass-ionomer cement with conventional glass-ionomer cement. Journal of Indian Society of Pedodontics and Preventive Dentistry, 37(3), 265–270. https://doi.org/10.4103/JISPPD.JISPPD_342_18
Prabhakar, A. R., Balehosur, D. V., & Basappa, N. (2016). Comparative evaluation of shear bond strength and fluoride release of conventional glass ionomer with 1% ethanolic extract of propolis incorporated glass ionomer cement—Na in vitro study. Journal of Clinical and Diagnostic Research, 10(5), ZC88–ZC91. https://doi.org/10.7860/JCDR/2016/19220.7871
Rother, E. T. (2007). Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem. 20(2), 5-6.
Sari, F., & Ugurlu, M. (2023). Reforço de cimento de ionômero de vidro modificado por resina com fibra de vidro e óxido de grafeno. Revista de Comportamento Mecânico de Materiais Biomédicos, 142. https://doi.org/10.1016/j.jmbbm.2023.105850
Sidhu, S. K., & Nicholson, J. W. (2016). A review of glass-ionomer cements for clinical dentistry. Journal of Functional Biomaterials, 7 (16), 1–15.
(https://www.mdpi.com/2079-4983/7/3/16)
Silva, B. A. C., Silva, E. B. V., Moraes, R. A., Santos, R. S., Soares, A. F., & Vieira, I. M. (2024). Novas formulações e perspectivas futuras do cimento de ionômero de vidro: uma revisão narrativa. Research, Society and Development, 13 (11). http://dx.doi.org/10.33448/rsd-v13i11.47401
Silva, D. O. C., Silva, I. M., Rocha, A. O., Anjos, L. M., Lima, T. O., Santos, R. M. dos A., & Cruz, B. P. (2021). Cimento de ionômero de vidro e sua aplicabilidade na odontologia: uma revisão narrativa com ênfase em suas propriedades. Research, Society and Development, 10 (5).
http://dx.doi.org/10.33448/rsd-v10i5.14884
Silva, R. C. S., & Zuanon, A. C. C. (2005). Evaluation of the antimicrobial activity of glass ionomer cements modified by silver nitrate and chlorhexidine. Brazilian Dental Journal, 16(2), 103–107. https://doi.org/10.1590/S0103-64402005000200004
Spezzia, S. (2017). Cimento de ionômero de vidro: Revisão de literatura. Journal of Oral Investigations, 6(2), 74.
Srikurmam, M., Shetty, S. S., Mehta, V., Rizawan, S. A., & Ainda, M. (2023). A comprehensive evaluation of zirconia-reinforced glass ionomer cement’s effectiveness in dental caries: A systematic review and network meta-analysis. Dent J (Basel), 11 (9).
https://doi.org/10.3390/dj11090211
Subramaniam, P., Girish Babu, K. L., Neeraja, G., & Pillai, S. (2017).
Does addition of propolis to glass ionomer cement alter its physicomechanical properties? Na in vitro study. Journal of Clinical Pediatric Dentistry, 41(1), 62–65. https://doi.org/10.17796/1053-4628-41.1.62
Sundeep, D., Vijaya Kumar, T., Rao, P. S., Ravikumar, R. V. S. S. N., & Gopala Krishna, A. (2017). Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Progress in Biomaterials, 6, 57-66. https://doi.org/10.1007/s40204-017-0067-9
Sun, L., Yan, Z., Duan, Y., Zhang, J., & Liu, B. (2018). Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene. Journal Dental Materials, 34(6), e115–e127. https://doi.org/10.1016/j.dental.2018.02.006
Tada, A., Nakayama-Imaohji, H., Yamasaki, H., Hasibul, K., Yoneda, S., Uchida, K., Nariya, H., Suzuki, M., Miyake, M., & Kuwahara, T. (2016). Cleansing effect of acidic L-arginine on human oral biofilm. BMC Oral Health, 16, 40. https://doi.org/10.1186/s12903-016-0194-z
Tanaka, C. B., Ershad, F., Ellakwa, A., & Kruzic, J. J. (2020). Fiber reinforcement of a resin-modified glass ionomer cement. Journal Dental Materials, 36(12), 1516-1523. https://doi.org/10.1016/j.dental.2020.09.003
Uzel, I., Gurleck, C., Kuter, B., Ertugrul, F., & Eden, E. (2022). Efeito preventivo de cáries e retenção de selantes à base de ionômero de vidro e resina: uma avaliação clínica comparativa randomizada. BioMed Research International, 2022, 7 páginas.
https://doi.org/10.1155/2022/7205692
Vallittu, P. K., Boaccaccini, A. R., Hupa, L., & Watts, D. C. (2018). Materiais dentários bioativos — Eles existem e o que significa bioatividade? Materiais Dentários, 34 (5), 693–694. https://doi.org/10.1016/j.dental.2018.03.001
Wassel, M. O., & Allam, G. G. (2022). Anti-bacterial effect, fluoride release, and compressive strength of a glass ionomer containing silver and titanium nanoparticles. Indian Journal of Dental Research, 33 (1), 75–79. https://doi.org/10.4103/ijdr.IJDR_117_20
Yamakami, S. A., Ubaldini, A. L., Sato, F., Medina Neto, A., Pascotto, R. C., & Baesso, M. L. (2018). Study of the chemical interaction between a high-viscosity glass ionomer cement and dentin. Journal of Applied Oral Science, 26. https://doi.org/10.1590/1678-7757-2017-0384
Zhang, Y., et al. (2025). A scoping review of hydroxyapatite-modified glass ionomer cements used for restorative dentistry. Journal of Dentistry, 163.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Edmila Santos Silva, Larissa Silva Oliveira Alves, Raissa Rodrigues Lima, Sofia Silva Batista, Ian Matos Vieira, Ana Flávia Soares

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.
