A comunidade fúngica e as propriedades químicas do solo não são diretamente afetadas pelo algodão Bt

Autores

DOI:

https://doi.org/10.33448/rsd-v14i11.49956

Palavras-chave:

Algodão transgênico, Microbiota, Diversidade, Ecologia do solo, Fungos.

Resumo

O algodão transgênico tem sido cultivado no Brasil desde 2005, incluindo plantas que expressam o gene cry, derivado da bactéria entomopatogênica Bacillus thuringiensis (Bt). Essa tecnologia tem sido considerada eficiente no controle de insetos-praga-alvo. No entanto, pouco se sabe sobre se essas plantas transgênicas podem impactar os fungos do solo e a química do solo. Este estudo teve como objetivo avaliar os efeitos do algodão geneticamente modificado resistente a insetos sobre a comunidade fúngica e composição química do solo. O experimento foi conduzido na área agrícola da Universidade Federal da Grande Dourados, município de Dourados, estado de Mato Grosso do Sul, Brasil. Duas cultivares de algodão (Gossypium hirsutum L.; Malvales: Malvaceae) foram plantadas, uma expressando um gene Bt e outra sem o gene exógeno. As amostras de solo foram coletadas mensalmente ao longo do ciclo da cultura. A quantidade de fungos no solo foi obtida por cultivo em placas de Petri, em triplicata, utilizando meio de cultura de Martin e diluições seriadas de solo. A partir dos isolados, as morfoespécies foram identificadas por amplificação e sequenciamento da região ITS (Internal Transcribed Spacer) do rDNA. O número de unidades formadoras de colônia de fungos e a riqueza de espécies não foram diretamente influenciados pelo tipo de algodão cultivado ou pelos diferentes estádios de desenvolvimento da cultura. Da mesma forma, o cultivo de algodão Bt não afetou a química do solo, embora tenham sido observadas diferenças em relação aos diferentes períodos de amostragem. De modo geral, nossa pesquisa contribui para o conhecimento atual sobre a agricultura em áreas tropicais, mostrando que não há evidências aparentes de efeito do algodão Bt sobre as comunidades fúngicas e a química do solo.

Referências

Altschul, S. F. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein detabase search programs. Nucleic Acids Res., 25, 3389.

Berini, F., Montali, A., Liguori, R., Venturini, G., Bonelli, M., Shaltiel‐Harpaz, L., Reguzzoni, M., Siti, M., Marinelli, F., Casartelli, M. & Tettamanti, G. (2024). Production and characterization of Trichoderma asperellum chitinases and their use in synergy with Bacillus thuringiensis for lepidopteran control. Pest Management Science, 80(7), 3401-3411.

Cabello, M., & Arambarri, A. (2002). Diversity in soil fungi from undisturbed and disturbed Celtis tala and Scutia buxifolia forests in the eastern Buenos Aires province (Argentina). Microbiological Research, 157(2), 115-125.

Carvalho, V. G., Abreu, L. M. D., Oliveira, J. M., Brotel, D. A., Monteiro, G. G., Lambais, M. R., & Pfenning, L. H. (2008). Comunidades de fungos em solo do cerrado sob vegetação nativa e sob cultivo de soja e algodão. Anais...

Chakraborty, S., Talukdar, A., Dey, S., & Bhattacharya, S. (2025). Role of fungi, bacteria and microalgae in bioremediation of emerging pollutants with special reference to pesticides, heavy metals and pharmaceuticals. Discover Environment, 3(1), 91.

Chen, X. H., Wang, F. L., Zhang, R., Ji, L. L., Yang, Z. L., Lin, H., & Zhao, B. (2016). Evidences of inhibited arbuscular mycorrhizal fungal development and colonization in multiple lines of Bt cotton. Agriculture, Ecosystems & Environment, 230, 169-176.

Cui, F., Li, Q., Shang, S., Hou, X., Miao, H., & Chen, X. (2024). Effects of cotton peanut rotation on crop yield soil nutrients and microbial diversity. Scientific Reports, 14(1), 28072.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791.

Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341(6147), 752-758.

Flores, S., Saxena, D., & Stotzky, G. (2005). Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biology and Biochemistry, 37(6), 1073-1082.

Freitas, L. M., Souza, B. H., Ferreira, F. S., Antunes, A. P., & Bruzi, A. T. (2024). Resistance of Bt and Non-Bt Soybean Cultivars Adapted to Novel Growing Regions of Brazil to Chrysodeixis includens and Spodoptera frugiperda. Neotropical Entomology, 53(6), 1332-1342.

Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(1), 3-49.

García, M., García-Benítez, C., Ortego, F., & Farinós, G. P. (2023). Monitoring insect resistance to Bt maize in the European Union: Update, challenges, and future prospects. Journal of Economic Entomology, 116(2), 275-288.

Gassmann, A. J., & Reisig, D. D. (2023). Management of insect pests with Bt crops in the United States. Annual Review of Entomology, 68(1), 31-49.

Ge, L., Mao, C., Wu, Y., Wang, L., Chao, S., Lv, B., Ye, S.; Wang, X., Zhao, K., Chen, J. & Li, P. (2025). Soil nutrient cycling and microbiome responses to Bt rice cultivation. Plant and Soil, 509(1), 221-236.

Gordon, D., Abajian, C., & Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Research, 8(3), 195-202.

James, C. (2015). Global status of commercialized biotech/GM crops: 2015. ISAAA brief, 49.

Kathage, J., & Qaim, M. (2012). Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proceedings of the National Academy of Sciences, 109(29), 11652-11656.

Khatri, S., Chaudhary, P., Shivay, Y. S., & Sharma, S. (2023). Role of fungi in imparting general disease suppressiveness in soil from organic field. Microbial Ecology, 86(3), 2047-2059.

Kuramae-Izioka, E. E. (1997). A rapid, easy and high yield protocol for total genomic DNA isolation of Colletotrichum gloeosporioides and Fusarium oxysporum.

Lamarche, J., Stefani, F. O., Séguin, A., & Hamelin, R. C. (2011). Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiology Ecology, 76(2), 199-208.

Lebedev, V., Lebedeva, T., & Shestibratov, K. (2023). Impact of transgenic birch with modified nitrogen metabolism on soil properties, microbial biomass and enzymes in 4-year study. Plant and Soil, 484(1), 627-643.

Li, C., Wang, J., Ling, F., & You, A. (2023). Application and development of Bt insect resistance genes in rice breeding. Sustainability, 15(12), 9779.

Li, J., Zheng, Q., Liu, J., Pei, S., Yang, Z., Chen, R., Ma, L., Niu, J. & Tian, T. (2024). Bacterial–fungal interactions and response to heavy metal contamination of soil in agricultural areas. Frontiers in Microbiology, 15, 1395154.

Magurran, A. E. (2013). Ecological diversity and its measurement. Springer Science & Business Media.

Majumder, S., Datta, K., & Datta, S. K. (2025). 25 Years of Pesticidal Cry1Ab/Ac Fusion Proteins in Crop Protection: Advances in Bt Crop Development, Target Pest Management, Safety, Environmental Impact, and Regulatory Frameworks. Journal of Crop Health, 77(2), 55.

Martin, J. P. (1950). Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Science, 69(3), 215-232.

Mondo, S. J., & Grigoriev, I. V. (2025). A genomic perspective on fungal diversity and evolution. Nature Reviews Microbiology, 1-16.

Neder, R. N. (1992). Microbiologia: manual de laboratório. In Microbiologia: manual de laboratório (pp. 137-137).

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. [free ebook]. Santa Maria: Editora da UFSM.

Razzaq, A., Zafar, M. M., Ali, A., Li, P., Qadir, F., Zahra, L. T., Shaukat, F., Laghari, A. H., Yuan, Y. & Gong, W. (2023). Biotechnology and solutions: Insect-pest-resistance management for improvement and development of Bt cotton (Gossypium hirsutum L.). Plants, 12(23), 4071.

Rodrigues, W. C. (2005). DivEs-Diversidade de espécies. Versão 2.0. Software e Guia do Usuário, 2005.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425.

Saxena, D., & Stotzky, G. (2001). Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biology and Biochemistry, 33(9), 1225-1230.

Saxena, D., & Stotzky, G. (2003). Fate and effects in soil of the insecticidal toxins from Bacillus thuringiensis in transgenic plants. Collection of Biosafety Reviews. International Centre for Genetic Engineering and Biotechnology, Trieste, 7-83.

Shen, W., Liu, L., Fang, Z., Zhang, L., Ren, Z., Yu, Q., Yin, X. & Liu, B. (2025). Cultivation of genetically modified soybeans did not Alter the overall structure of rhizosphere soil microbial communities. Plants, 14(3), 457.

Shitsuka, R. et al. (2014). Matemática fundamental para a tecnologia. (2.ed). Editora Érica.

Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes.

Stajich, J. E., Berbee, M. L., Blackwell, M., Hibbett, D. S., James, T. Y., Spatafora, J. W., & Taylor, J. W. (2009). The Fungi. Current Biology, 19(18), 840-845.

Tabashnik, B. E., Fabrick, J. A., & Carrière, Y. (2023). Global patterns of insect resistance to transgenic Bt crops: the first 25 years. Journal of Economic Entomology, 116(2), 297-309.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

Vadakattu, G., & Watson, S. (2004). Ecological impacts of GM cotton on soil biodiversity: Below ground production of Bt by GM cotton and Bt cotton impacts on soil biological processes. CSIRO Land and Water.

Vieira, S. (2021). Introdução à bioestatística. Editora GEN/Guanabara Koogan.

Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of hazardous materials, 174(1-3), 1-8.

Xie, Y., Xiang, J. Y., Long, L., Ma, Y., Xing, Z., Wang, L., Shao, C., Liu, N. & Li, F. (2025). Impact of different treatment methods and timings on soil microbial communities with transgenic maize straw return. Scientific Reports, 15(1), 24820.

Xiong, R., He, X., Gao, N., Li, Q., Qiu, Z., Hou, Y., & Shen, W. (2024). Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils. Microbiology Spectrum, 12(8), e04165-23.

Downloads

Publicado

2025-11-08

Edição

Seção

Ciências Agrárias e Biológicas

Como Citar

A comunidade fúngica e as propriedades químicas do solo não são diretamente afetadas pelo algodão Bt. Research, Society and Development, [S. l.], v. 14, n. 11, p. e55141149956, 2025. DOI: 10.33448/rsd-v14i11.49956. Disponível em: https://www.rsdjournal.org/rsd/article/view/49956. Acesso em: 5 dez. 2025.