Physicochemical characterization of the Ti-6Al-4V ELI alloy thermochemically treated with NaOH




Ti-6Al-4V alloy; Treatment with NaOH; Sodium titanate (Na2Ti5O11).


Titanium is a complex element and presents more than one crystallographic form, at room temperature it has a hexagonal crystal structure that transforms into a body-centered structure at 800ºC, and a melting point of 1670ºC ± 5ºC. Titanium alloys have superior mechanical properties to Ti c.p. in addition to excellent biocompatibility, a characteristic makes them the material of choice in orthopedic and dental applications. The alloy used in this study was the Ti-6Al-4V ELI alloy, obtained in cylindrical shape, sanded, and subsequently subjected to thermochemical treatment with NaOH. The physicochemical characterization was performed by the techniques of X-ray fluorescenic spectrometry (XRF), scanning electron microscopy (SEM), X-ray diffractometry (XRD) and X-ray excited photoelectron spectroscopy (XPS). A biphasic structure (α and β) and the formation of an alkali titanate hydrogel (sodium titanate (Na2Ti5O11)) on the surface were observed, due to the reaction of the TiO2 film with the NaOH solution. It is concluded the immersion of the samples in NaOH, resulting in the crystallization of the titanate hydrogel layer, may favor the formation of calcium phosphates, as well as the bone/implant interaction.


Albrektsson, T., Brånemark, P. I., Jacobsson, M., & Tjellström, A. (1987). Present clinical applications of osseointegrated percutaneous implants. In Plastic and Reconstructive Surgery (Vol. 79, Issue 5, pp. 721–730).

Feng, Q. L., Wang, H., Cui, F. Z., & Kim, T. N. (1999). Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. Journal of Crystal Growth, 200(3), 550–557.

Fonseca, Y., Crema de Almeida, A. C., Fernandes, D., Elias, C., & Monteiro, E. (2017). Mechanical Properties of Ti-47Nb and Ti-30Nb-8Zr Alloys. 24th ABCM International Congress of Mechanical Engineering.

Gil, F. J., Padrós, A., Manero, J. M., Aparicio, C., Nilsson, M., & Planell, J. A. (2002). Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Materials Science and Engineering C, 22(1), 53–60.

Goto, T. (2014). Osseointegration and dental implants. Europe PMC, 24(2), 265–271.

He, D., Liu, P., Liu, X., Ma, F., Chen, X., Li, W., Du, J., Wang, P., & Zhao, J. (2016). Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. Journal of Alloys and Compounds, 672, 336–343.

Ho, W. F., Lai, C. H., Hsu, H. C., & Wu, S. C. (2009). Surface modification of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH. Surface and Coatings Technology, 203(20–21), 3142–3150.

Hsu, H. C., Wu, S. C., Fu, C. L., & Ho, W. F. (2010). Formation of calcium phosphates on low-modulus Ti-7.5Mo alloy by acid and alkali treatments. Journal of Materials Science, 45(13), 3661–3670.

Jian-FengNie. (2014). Physical Metallurgy of Light Alloys. Physical Metallurgy, 2009–2156.

Kim, H. M., Miyaji, F., Kokubo, T., & Nakamura, T. (1997). Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. Journal of Materials Science: Materials in Medicine, 8(6), 341–347.

Kizuki, T., Matsushita, T., & Kokubo, T. (2014). Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. Journal of Materials Science: Materials in Medicine, 25(7), 1737–1746.

Kizuki, T., Takadama, H., Matsushita, T., Nakamura, T., & Kokubo, T. (2013). Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments. Journal of Materials Science: Materials in Medicine, 24(3), 635–644.

Kokubo, T. (1996). Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta, 280–281(SPEC. ISS.), 479–490.

Kokubo, Tadashi, & Yamaguchi, S. (2015). Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments. The Open Biomedical Engineering Journal, 9(1), 29–41.

Krza̧kała, A., Kazek-Kȩsik, A., & Simka, W. (2013). Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys. In RSC Advances.

Krzakała, A., Słuzalska, K., Dercz, G., Maciej, A., Kazek, A., Szade, J., Winiarski, A., Dudek, M., Michalska, J., Tylko, G., Osyczka, A. M., & Simka, W. (2013). Characterisation of bioactive films on Ti-6Al-4V alloy. Electrochimica Acta, 104, 425–438.

Kumar, P., & Ramamurty, U. (2019). Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti–6Al–4V alloy. Acta Materialia, 169, 45–59.

Kuroda, P. A. B., & Nascimento, M V; Grandini, C. R. (2020). Preparação e caracterização de uma liga de titânio com a adição de tântalo e zircônio para aplicações biomédicas Preparation and characterization of a titanium alloy with the addition of tantalum and zirconium for biomedical applications. Revista Materia, 25(2).

Ma, J., Wong, H., Kong, L. B., & Peng, K. W. (2003). Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 14(6), 619–623.

Mao, C., Li, H., Cui, F., Ma, C., & Feng, Q. (1999). Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. Journal of Crystal Growth, 206(4), 308–321.

Mohammed, H. I., Carradò, A., & Abdel-Fattah, W. I. (2015). Noble metals role in autocatalytic phosphate coatings on TAV alloys. I.Ag functionalization of autocatalytic phosphate deposition on TAV alloys. Surface and Coatings Technology, 282, 171–179.

Mohammed, M. T., Khan, Z. A., Geetha, M., & Siddiquee, A. N. (2015). Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. Journal of Alloys and Compounds, 634, 272–280.

Oh, J. M., Roh, K. M., Kwon, H., Lee, B. K., Suh, C. Y., & Lim, J. W. (2014). Preparation of Ti ternary alloys by addition of Si to Ti-Mo alloy scraps for carbonitride application. Materials Transactions, 56(1), 167–170.

Ohno, K., Tsuchiya, M., Kuwahara, R., Sahara, R., Bhattacharyya, S., & Pham, T. N. (2021). Study on Ni-Ti alloys around equiatomic composition by the first-principles phase field method. Computational Materials Science, 191(December 2020), 110284.

Sasikumar, Y., Indira, K., & Rajendran, N. (2019). Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion, 5(2), 0.

Shahriyari, F., Razaghian, A., Taghiabadi, R., Peirovi, A., & Amini, A. (2018). Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy. Surface and Coatings Technology, 353(August), 148–157.

Takadama, H., Kim, H. M., Kokubo, T., & Nakamura, T. (2001). XPS study of the process of apatite formation on bioactive Ti-6Al-4Valloy in simulated body fluid. Science and Technology of Advanced Materials, 2(2), 389–396.




How to Cite

ITALIANO, A. E. V. .; CARREIRA, A. J.; GUEDES, A. P. P. .; AMÁNTEA, D. V.; VAZ, L. G.; SANTOS, M. L. dos. Physicochemical characterization of the Ti-6Al-4V ELI alloy thermochemically treated with NaOH. Research, Society and Development, [S. l.], v. 11, n. 2, p. e50211225915, 2022. DOI: 10.33448/rsd-v11i2.25915. Disponível em: Acesso em: 1 mar. 2024.



Health Sciences