Caracterización fisicoquímica de la aleación Ti-6Al-4V ELI tratada termoquímicamente con NaOH

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.25915

Palabras clave:

Aleación Ti-6Al-4V; Tratamiento con NaOH; Titanato de sodio (Na2Ti5O11).

Resumen

El titanio es un elemento complejo y presenta más de una forma cristalográfica, a temperatura ambiente tiene una estructura cristalina hexagonal que se transforma en una estructura centrada en el cuerpo a 800ºC, y un punto de fusión de 1670ºC ± 5ºC. Las aleaciones de titanio tienen propiedades mecánicas superiores al Ti c.p. además de una excelente biocompatibilidad, característica que las convierte en el material de elección en aplicaciones ortopédicas y dentales. La aleación utilizada en este estudio fue la aleación Ti-6Al-4V ELI, obtenida en forma cilíndrica, lijada y posteriormente sometida a tratamiento termoquímico con NaOH. La caracterización fisicoquímica se realizó mediante las técnicas de espectrometría fluorescente de rayos X (XRF), microscopía electrónica de barrido (SEM), difractometría de rayos X (XRD) y espectroscopía de fotoelectrones excitados por rayos X (XPS). Se observó una estructura bifásica (α y β) y la formación de un hidrogel de titanato alcalino (titanato de sodio (Na2Ti5O11)) en la superficie, debido a la reacción de la película de TiO2 con la solución de NaOH. Se concluye que la inmersión de las muestras en NaOH, resultando en la cristalización de la capa de hidrogel de titanato, puede favorecer la formación de fosfatos de calcio, así como la interacción hueso/implante.

Citas

Albrektsson, T., Brånemark, P. I., Jacobsson, M., & Tjellström, A. (1987). Present clinical applications of osseointegrated percutaneous implants. In Plastic and Reconstructive Surgery (Vol. 79, Issue 5, pp. 721–730). https://doi.org/10.1097/00006534-198705000-00007

Feng, Q. L., Wang, H., Cui, F. Z., & Kim, T. N. (1999). Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. Journal of Crystal Growth, 200(3), 550–557. https://doi.org/10.1016/S0022-0248(98)01402-X

Fonseca, Y., Crema de Almeida, A. C., Fernandes, D., Elias, C., & Monteiro, E. (2017). Mechanical Properties of Ti-47Nb and Ti-30Nb-8Zr Alloys. 24th ABCM International Congress of Mechanical Engineering. https://doi.org/10.26678/abcm.cobem2017.cob17-1016

Gil, F. J., Padrós, A., Manero, J. M., Aparicio, C., Nilsson, M., & Planell, J. A. (2002). Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Materials Science and Engineering C, 22(1), 53–60. https://doi.org/10.1016/S0928-4931(01)00389-7

Goto, T. (2014). Osseointegration and dental implants. Europe PMC, 24(2), 265–271. https://doi.org/clica1402265271

He, D., Liu, P., Liu, X., Ma, F., Chen, X., Li, W., Du, J., Wang, P., & Zhao, J. (2016). Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. Journal of Alloys and Compounds, 672, 336–343. https://doi.org/10.1016/j.jallcom.2016.02.173

Ho, W. F., Lai, C. H., Hsu, H. C., & Wu, S. C. (2009). Surface modification of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH. Surface and Coatings Technology, 203(20–21), 3142–3150. https://doi.org/10.1016/j.surfcoat.2009.03.042

Hsu, H. C., Wu, S. C., Fu, C. L., & Ho, W. F. (2010). Formation of calcium phosphates on low-modulus Ti-7.5Mo alloy by acid and alkali treatments. Journal of Materials Science, 45(13), 3661–3670. https://doi.org/10.1007/s10853-010-4411-x

Jian-FengNie. (2014). Physical Metallurgy of Light Alloys. Physical Metallurgy, 2009–2156. https://doi.org/https://doi.org/10.1016/B978-0-444-53770-6.00020-4

Kim, H. M., Miyaji, F., Kokubo, T., & Nakamura, T. (1997). Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. Journal of Materials Science: Materials in Medicine, 8(6), 341–347. https://doi.org/10.1023/A:1018524731409

Kizuki, T., Matsushita, T., & Kokubo, T. (2014). Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. Journal of Materials Science: Materials in Medicine, 25(7), 1737–1746. https://doi.org/10.1007/s10856-014-5201-9

Kizuki, T., Takadama, H., Matsushita, T., Nakamura, T., & Kokubo, T. (2013). Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments. Journal of Materials Science: Materials in Medicine, 24(3), 635–644. https://doi.org/10.1007/s10856-012-4837-6

Kokubo, T. (1996). Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta, 280–281(SPEC. ISS.), 479–490. https://doi.org/10.1016/0040-6031(95)02784-X

Kokubo, Tadashi, & Yamaguchi, S. (2015). Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments. The Open Biomedical Engineering Journal, 9(1), 29–41. https://doi.org/10.2174/1874120701509010029

Krza̧kała, A., Kazek-Kȩsik, A., & Simka, W. (2013). Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys. In RSC Advances. https://doi.org/https://doi.org/10.1039/C3RA43465F

Krzakała, A., Słuzalska, K., Dercz, G., Maciej, A., Kazek, A., Szade, J., Winiarski, A., Dudek, M., Michalska, J., Tylko, G., Osyczka, A. M., & Simka, W. (2013). Characterisation of bioactive films on Ti-6Al-4V alloy. Electrochimica Acta, 104, 425–438. https://doi.org/10.1016/j.electacta.2012.12.081

Kumar, P., & Ramamurty, U. (2019). Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti–6Al–4V alloy. Acta Materialia, 169, 45–59. https://doi.org/10.1016/j.actamat.2019.03.003

Kuroda, P. A. B., & Nascimento, M V; Grandini, C. R. (2020). Preparação e caracterização de uma liga de titânio com a adição de tântalo e zircônio para aplicações biomédicas Preparation and characterization of a titanium alloy with the addition of tantalum and zirconium for biomedical applications. Revista Materia, 25(2). https://doi.org/10.1590/s1517-707620200002.1041

Ma, J., Wong, H., Kong, L. B., & Peng, K. W. (2003). Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 14(6), 619–623. https://doi.org/10.1088/0957-4484/14/6/310

Mao, C., Li, H., Cui, F., Ma, C., & Feng, Q. (1999). Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. Journal of Crystal Growth, 206(4), 308–321. https://doi.org/10.1016/S0022-0248(99)00315-2

Mohammed, H. I., Carradò, A., & Abdel-Fattah, W. I. (2015). Noble metals role in autocatalytic phosphate coatings on TAV alloys. I.Ag functionalization of autocatalytic phosphate deposition on TAV alloys. Surface and Coatings Technology, 282, 171–179. https://doi.org/10.1016/j.surfcoat.2015.10.003

Mohammed, M. T., Khan, Z. A., Geetha, M., & Siddiquee, A. N. (2015). Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. Journal of Alloys and Compounds, 634, 272–280. https://doi.org/10.1016/j.jallcom.2015.02.095

Oh, J. M., Roh, K. M., Kwon, H., Lee, B. K., Suh, C. Y., & Lim, J. W. (2014). Preparation of Ti ternary alloys by addition of Si to Ti-Mo alloy scraps for carbonitride application. Materials Transactions, 56(1), 167–170. https://doi.org/10.2320/matertrans.M2014285

Ohno, K., Tsuchiya, M., Kuwahara, R., Sahara, R., Bhattacharyya, S., & Pham, T. N. (2021). Study on Ni-Ti alloys around equiatomic composition by the first-principles phase field method. Computational Materials Science, 191(December 2020), 110284. https://doi.org/10.1016/j.commatsci.2021.110284

Sasikumar, Y., Indira, K., & Rajendran, N. (2019). Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion, 5(2), 0. https://doi.org/10.1007/s40735-019-0229-5

Shahriyari, F., Razaghian, A., Taghiabadi, R., Peirovi, A., & Amini, A. (2018). Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy. Surface and Coatings Technology, 353(August), 148–157. https://doi.org/10.1016/j.surfcoat.2018.08.051

Takadama, H., Kim, H. M., Kokubo, T., & Nakamura, T. (2001). XPS study of the process of apatite formation on bioactive Ti-6Al-4Valloy in simulated body fluid. Science and Technology of Advanced Materials, 2(2), 389–396. https://doi.org/10.1016/S1468-6996(01)00007-9

Descargas

Publicado

04/02/2022

Cómo citar

ITALIANO, A. E. V. .; CARREIRA, A. J.; GUEDES, A. P. P. .; AMÁNTEA, D. V.; VAZ, L. G.; SANTOS, M. L. dos. Caracterización fisicoquímica de la aleación Ti-6Al-4V ELI tratada termoquímicamente con NaOH. Research, Society and Development, [S. l.], v. 11, n. 2, p. e50211225915, 2022. DOI: 10.33448/rsd-v11i2.25915. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25915. Acesso em: 18 may. 2024.

Número

Sección

Ciencias de la salud