Caracterização físico-qúmica da liga Ti-6Al-4V ELI tratada termoquicamente com NaOH

Autores

DOI:

https://doi.org/10.33448/rsd-v11i2.25915

Palavras-chave:

Liga Ti-6Al-4V; Tratamento com NaOH; Titanato de sódio (Na2Ti5O11).

Resumo

O titânio é um elemento complexo e apresenta mais de uma forma cristalográfica, à temperatura ambiente apresenta uma estrutura cristalina hexagonal que se transforma em uma estrutura de corpo centrado à 800ºC, e um ponto de fusão de 1670ºC ± 5ºC. As ligas de titânio apresentam propriedades mecânicas superiores ao Ti c.p. além de excelente biocompatibilidade, característica que a torna material de escolha em aplicações ortopédicas e odontológicos. A liga usada neste estudo foi a liga Ti-6Al-4V ELI, obtida em formato cilíndrico, lixadas e posteriormente submetidas ao tratamento termoquímico com NaOH.  A caracterização físico-química foi realizada pelas técnicas de espectrometria de fluorescênica de raios X (XRF), microscopia eletrônica de varredura (MEV), difratometria de raios X (DRX) e espectroscopia de fotoelétrons excitados por raios X (XPS). Observou-se uma estrutura bifásica (α e β) e a formação de hidrogel de titanato alcalino (titanato de sódio (Na2Ti5O11)) sobre a superfície, devido a reação do filme de TiO2 com a solução NaOH. Conclui-se que com a imersão das amostras em NaOH resultando na cristalização da camada de hidrogel de titanato, pode favorecer a formação de fosfatos de cálcio, bem como a interação osso/implante.

Referências

Albrektsson, T., Brånemark, P. I., Jacobsson, M., & Tjellström, A. (1987). Present clinical applications of osseointegrated percutaneous implants. In Plastic and Reconstructive Surgery (Vol. 79, Issue 5, pp. 721–730). https://doi.org/10.1097/00006534-198705000-00007

Feng, Q. L., Wang, H., Cui, F. Z., & Kim, T. N. (1999). Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. Journal of Crystal Growth, 200(3), 550–557. https://doi.org/10.1016/S0022-0248(98)01402-X

Fonseca, Y., Crema de Almeida, A. C., Fernandes, D., Elias, C., & Monteiro, E. (2017). Mechanical Properties of Ti-47Nb and Ti-30Nb-8Zr Alloys. 24th ABCM International Congress of Mechanical Engineering. https://doi.org/10.26678/abcm.cobem2017.cob17-1016

Gil, F. J., Padrós, A., Manero, J. M., Aparicio, C., Nilsson, M., & Planell, J. A. (2002). Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Materials Science and Engineering C, 22(1), 53–60. https://doi.org/10.1016/S0928-4931(01)00389-7

Goto, T. (2014). Osseointegration and dental implants. Europe PMC, 24(2), 265–271. https://doi.org/clica1402265271

He, D., Liu, P., Liu, X., Ma, F., Chen, X., Li, W., Du, J., Wang, P., & Zhao, J. (2016). Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V. Journal of Alloys and Compounds, 672, 336–343. https://doi.org/10.1016/j.jallcom.2016.02.173

Ho, W. F., Lai, C. H., Hsu, H. C., & Wu, S. C. (2009). Surface modification of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH. Surface and Coatings Technology, 203(20–21), 3142–3150. https://doi.org/10.1016/j.surfcoat.2009.03.042

Hsu, H. C., Wu, S. C., Fu, C. L., & Ho, W. F. (2010). Formation of calcium phosphates on low-modulus Ti-7.5Mo alloy by acid and alkali treatments. Journal of Materials Science, 45(13), 3661–3670. https://doi.org/10.1007/s10853-010-4411-x

Jian-FengNie. (2014). Physical Metallurgy of Light Alloys. Physical Metallurgy, 2009–2156. https://doi.org/https://doi.org/10.1016/B978-0-444-53770-6.00020-4

Kim, H. M., Miyaji, F., Kokubo, T., & Nakamura, T. (1997). Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. Journal of Materials Science: Materials in Medicine, 8(6), 341–347. https://doi.org/10.1023/A:1018524731409

Kizuki, T., Matsushita, T., & Kokubo, T. (2014). Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. Journal of Materials Science: Materials in Medicine, 25(7), 1737–1746. https://doi.org/10.1007/s10856-014-5201-9

Kizuki, T., Takadama, H., Matsushita, T., Nakamura, T., & Kokubo, T. (2013). Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments. Journal of Materials Science: Materials in Medicine, 24(3), 635–644. https://doi.org/10.1007/s10856-012-4837-6

Kokubo, T. (1996). Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta, 280–281(SPEC. ISS.), 479–490. https://doi.org/10.1016/0040-6031(95)02784-X

Kokubo, Tadashi, & Yamaguchi, S. (2015). Bioactive Titanate Layers Formed on Titanium and Its Alloys by Simple Chemical and Heat Treatments. The Open Biomedical Engineering Journal, 9(1), 29–41. https://doi.org/10.2174/1874120701509010029

Krza̧kała, A., Kazek-Kȩsik, A., & Simka, W. (2013). Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys. In RSC Advances. https://doi.org/https://doi.org/10.1039/C3RA43465F

Krzakała, A., Słuzalska, K., Dercz, G., Maciej, A., Kazek, A., Szade, J., Winiarski, A., Dudek, M., Michalska, J., Tylko, G., Osyczka, A. M., & Simka, W. (2013). Characterisation of bioactive films on Ti-6Al-4V alloy. Electrochimica Acta, 104, 425–438. https://doi.org/10.1016/j.electacta.2012.12.081

Kumar, P., & Ramamurty, U. (2019). Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti–6Al–4V alloy. Acta Materialia, 169, 45–59. https://doi.org/10.1016/j.actamat.2019.03.003

Kuroda, P. A. B., & Nascimento, M V; Grandini, C. R. (2020). Preparação e caracterização de uma liga de titânio com a adição de tântalo e zircônio para aplicações biomédicas Preparation and characterization of a titanium alloy with the addition of tantalum and zirconium for biomedical applications. Revista Materia, 25(2). https://doi.org/10.1590/s1517-707620200002.1041

Ma, J., Wong, H., Kong, L. B., & Peng, K. W. (2003). Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology, 14(6), 619–623. https://doi.org/10.1088/0957-4484/14/6/310

Mao, C., Li, H., Cui, F., Ma, C., & Feng, Q. (1999). Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. Journal of Crystal Growth, 206(4), 308–321. https://doi.org/10.1016/S0022-0248(99)00315-2

Mohammed, H. I., Carradò, A., & Abdel-Fattah, W. I. (2015). Noble metals role in autocatalytic phosphate coatings on TAV alloys. I.Ag functionalization of autocatalytic phosphate deposition on TAV alloys. Surface and Coatings Technology, 282, 171–179. https://doi.org/10.1016/j.surfcoat.2015.10.003

Mohammed, M. T., Khan, Z. A., Geetha, M., & Siddiquee, A. N. (2015). Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. Journal of Alloys and Compounds, 634, 272–280. https://doi.org/10.1016/j.jallcom.2015.02.095

Oh, J. M., Roh, K. M., Kwon, H., Lee, B. K., Suh, C. Y., & Lim, J. W. (2014). Preparation of Ti ternary alloys by addition of Si to Ti-Mo alloy scraps for carbonitride application. Materials Transactions, 56(1), 167–170. https://doi.org/10.2320/matertrans.M2014285

Ohno, K., Tsuchiya, M., Kuwahara, R., Sahara, R., Bhattacharyya, S., & Pham, T. N. (2021). Study on Ni-Ti alloys around equiatomic composition by the first-principles phase field method. Computational Materials Science, 191(December 2020), 110284. https://doi.org/10.1016/j.commatsci.2021.110284

Sasikumar, Y., Indira, K., & Rajendran, N. (2019). Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. Journal of Bio- and Tribo-Corrosion, 5(2), 0. https://doi.org/10.1007/s40735-019-0229-5

Shahriyari, F., Razaghian, A., Taghiabadi, R., Peirovi, A., & Amini, A. (2018). Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy. Surface and Coatings Technology, 353(August), 148–157. https://doi.org/10.1016/j.surfcoat.2018.08.051

Takadama, H., Kim, H. M., Kokubo, T., & Nakamura, T. (2001). XPS study of the process of apatite formation on bioactive Ti-6Al-4Valloy in simulated body fluid. Science and Technology of Advanced Materials, 2(2), 389–396. https://doi.org/10.1016/S1468-6996(01)00007-9

Downloads

Publicado

04/02/2022

Como Citar

ITALIANO, A. E. V. .; CARREIRA, A. J.; GUEDES, A. P. P. .; AMÁNTEA, D. V.; VAZ, L. G.; SANTOS, M. L. dos. Caracterização físico-qúmica da liga Ti-6Al-4V ELI tratada termoquicamente com NaOH. Research, Society and Development, [S. l.], v. 11, n. 2, p. e50211225915, 2022. DOI: 10.33448/rsd-v11i2.25915. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25915. Acesso em: 18 maio. 2024.

Edição

Seção

Ciências da Saúde