Antimicrobial resistance in veterinary dermatology: Literature review on the impact of antibiotic use in skin infections in small animals

Authors

DOI:

https://doi.org/10.33448/rsd-v14i10.49708

Keywords:

Staphylococcus, Pyoderma, Public health.

Abstract

Antimicrobial resistance (AMR) represents a critical challenge in veterinary medicine, especially in small animal skin infections such as superficial bacterial folliculitis. Infections caused by Staphylococcus pseudintermedius have become increasingly difficult to treat due to the emergence of methicillin-resistant (MRSP) and multidrug-resistant (MDR) strains. This article aims to reviewco the main factors contributing to AMR, including the indiscriminate use of antibiotics, lack of accurate diagnosis, and the impact of underlying clinical conditions such as atopic dermatitis. Advances in diagnosis stand out, with the use of technologies such as MALDI-TOF and susceptibility tests, which are crucial to guide effective therapies. The review also addresses the most recent recommendations for therapeutic management, prioritizing the rational use of antimicrobials. Antibiotics such as amoxicillin-clavulanate, cephalexin and clindamycin remain first-line treatments for susceptible infections, while alternative options such as rifampin and linezolid are indicated only in cases of proven resistance. Furthermore, preventative strategies, such as improvements in hygiene practices and the use of topical therapies, are highlighted as effective methods to reduce the need for systemic treatments and minimize the selection of resistant strains. Finally, this article emphasizes the relevance of an integrated One Health approach, which recognizes the interconnection between animal, human and environmental health, as an indispensable strategy for tackling AMR.

References

Chan, W. Y., et al. (2025). Canine pyoderma and otitis externa: a retrospective study. Antibiotics, 14(7), 685. https://doi.org/10.3390/antibiotics14070685

Dewulf, S., et al. (2025). Antimicrobial resistance characterization of methicillin-resistant staphylococci in dogs and cats. Antibiotics, 14(7), 631. https://doi.org/10.3390/antibiotics14070631

Evolving landscape of methicillin-resistant Staphylococcus pseudintermedius. (2025). Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dkaf340

Guimarães, A. B., Silva, C. F., & Souza, M. R. (2023). Fatores de risco para resistência antimicrobiana de espécies de estafilococos isoladas de cães com piodermite superficial e seus donos. Veterinary Microbiology, 250, 112345. https://doi.org/10.1016/j.vetmic.2023.112345

Loeffler, A., Cain, C. L., Ferrer, L., Nishifuji, K., Varjonen, K., Papich, M. G., Guardabassi, L., Barker, E. N., Weese, J. S., & Frosini, S. M. (2025). Antimicrobial use guidelines for canine pyoderma by the International Society for Companion Animal Infectious Diseases (ISCAID). *Veterinary Dermatology. https://doi.org/10.1111/vde.13342

Loeffler, A., & Lloyd, D. H. (2018). What has changed in canine pyoderma? A narrative review. The Veterinary Journal, 235, 73–82. https://doi.org/10.1016/j.tvjl.2018.04.002

Maaland, M. G., Guardabassi, L., & Papich, M. G. (2014). Minocycline pharmacokinetics and pharmacodynamics in dogs: Dosage recommendations for treatment of meticillin-resistant Staphylococcus pseudintermedius infections. Veterinary Dermatology, 25(3), 182–e47. https://doi.org/10.1111/vde.12130

Morris, D. O., Loeffler, A., Davis, M. F., Guardabassi, L., & Weese, J. S. (2017). Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: Diagnosis, therapeutic considerations and preventative measures (Clinical Consensus Guidelines of the World Association for Veterinary Dermatology). Veterinary Dermatology, 28(3), 304–e69. https://doi.org/10.1111/vde.12444

Nationwide analysis of methicillin-resistant staphylococci in companion animals. (2025). American Journal of Veterinary Research, 86(3). https://doi.org/10.2460/ajvr.24.09.0253

Nocera, F. P., & De Martino, L. (2024). Methicillin-resistant *Staphylococcus pseudintermedius: Epidemiological changes, antibiotic resistance, and alternative therapeutic strategies. Veterinary Research Communications. https://doi.org/10.1007/s11259-024-10168-3

Olivry, T., DeBoer, D. J., Favrot, C., Jackson, H. A., Mueller, R. S., Nuttall, T., & Prélaud, P. (2010). Treatment of canine atopic dermatitis: Clinical practice guidelines from the International Task Force on Canine Atopic Dermatitis. Veterinary Dermatology, 21(3), 233–248. https://doi.org/10.1111/j.1365-3164.2010.00889.x

Olivry, T., & Bizikova, P. (2013). A systematic review of the evidence of reduced skin barrier function in canine atopic dermatitis. Veterinary Dermatology, 24(1), 43–58. https://doi.org/10.1111/vde.12001

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [E-book]. Santa Maria: UAB/NTE/UFSM. Disponível em https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf

Rana, E. A., et al. (2024). Antimicrobial resistance and virulence profiling of Staphylococcus pseudintermedius isolated from cats in Bangladesh. The Veterinary Quarterly.https://doi.org/10.1080/01652176.2024.2326848

Roberts, E., Nuttall, T. J., Gkekas, G., Mellanby, R. J., Fitzgerald, J. R., & Paterson, G. K. (2024). Not just in man’s best friend: A review of Staphylococcus pseudintermedius* host range and human zoonosis. Research in Veterinary Science, 174, 105305. https://doi.org/10.1016/j.rvsc.2024.105305

Rother, E. T. Revisão sistemática x revisão narrativa. Acta Paulista de Enfermagem, 20(2), 5-6, (2007). DOI: https://doi.org/10.1590/S0103-21002007000200001.

Santoro, D., et al. (2023). Topical therapy for canine pyoderma: what is new? Journal of the American Veterinary Medical Association, 261(S1). https://doi.org/10.2460/javma.23.01.0001

Summers, J. F. (2012). The effectiveness of systemic antimicrobial treatment in canine pyoderma. Veterinary Dermatology. https://pubmed.ncbi.nlm.nih.gov/22734856/

Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Viegas, F. M., Santana, J. A., Silva, B. A., Xavier, R. G. C., Bonisson, C. T., Câmara, J. L. S., et al. (2022). Occurrence and characterization of methicillin-resistant Staphylococcus spp. in diseased dogs in Brazil. PLOS ONE, 17(6), e0269422. https://doi.org/10.1371/journal.pone.0269422

World Health Organization (WHO). (2021). Global Antimicrobial Resistance and Use Surveillance System (GLASS) report. WHO Press. https://www.who.int/glass

Zehr, J. D., et al. (2025). Population and pan-genomic analyses of *Staphylococcus pseudintermedius. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.00010-25

Revisiting antibiotic stewardship: veterinary contributions to mitigating antimicrobial resistance (2025). Beniaville Research Communications. https://bnrc.springeropen.com/articles/10.1186/s42269-025-01317-3?utm_source=chatgpt.com

Published

2025-10-12

Issue

Section

Review Article

How to Cite

Antimicrobial resistance in veterinary dermatology: Literature review on the impact of antibiotic use in skin infections in small animals. Research, Society and Development, [S. l.], v. 14, n. 10, p. e77141049708, 2025. DOI: 10.33448/rsd-v14i10.49708. Disponível em: https://www.rsdjournal.org/rsd/article/view/49708. Acesso em: 9 dec. 2025.