Vital Soma - Mobile software for health monitoring and body care

Authors

DOI:

https://doi.org/10.33448/rsd-v14i12.50168

Keywords:

Health, Artificial intelligence, Gamification, Application, Calories.

Abstract

The objective of this article is to present a mobile application development project for health promotion, integrating AI and gamification to assist users through accessible and personalized monitoring of nutrition and physical activities. The methodology was structured in stages ranging from requirements gathering to the final system implementation. The application was developed in React Native, using Supabase as the database and Figma for interface design. The AI responsible for calorie estimation was trained in Google Colab, based on a computer vision model and a specialized dataset of food images. The intelligent chatbot, developed with the Gemini API, was designed to provide personalized support regarding nutrition and physical activities. The code adhered to the MVVM architectural pattern, and task management was carried out using the Scrum agile methodology, supported by Runrun.it. In the tests performed, the system showed good performance and stability in the main functionalities, such as activity logging and the evolution ranking, which utilizes gamification elements to motivate the user. It is concluded that the integration between different AI technologies and interactive features enhances engagement and self-care, making nutritional and physical monitoring more accessible, dynamic, and effective.

References

Alves, G. M., & Oliveira, T. C. (2020). A importância da alimentação saudável para o desenvolvimento humano. Humanas Sociais & Aplicadas, 10(27), 46–62.

Berger, B. G., & Tobar, D. A. (2011). Exercise and the quality of life. In T. S. Horn (Ed.), New sport and exercise psychology companion (pp. 483–505). Fitness Information Technology.

Discord Inc. (2025). Discord: Talk, chat, hang out. https://discord.com/

Docker. (2025). Docker documentation. https://docs.docker.com/

Figma. (2025). Figma help center – Documentação oficial do Figma. https://help.figma.com/hc/en-us

Google. (2025f). Gemini API. https://ai.google.dev/docs/gemini_api_overview

Lawrence, J. (2025). Food dataset v18. Roboflow. https://app.roboflow.com/marieli-0wetd/food-v18-oebdi/1https://app.roboflow.com/marieli-0wetd/food-v18-oebdi/1

Manickam, P., et al. (2022). Artificial intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors (Basel), 12(8), 562. https://www.google.com/search?q=https://doi.org/10.3390/bios12080562

Martins, T. B., et al. (2021). Utilização de um aplicativo para smartphone para aumentar o nível de atividade física de adultos e idosos: Um estudo com grupo focal. Revista Brasileira de Atividade Física & Saúde, 26, 1–9. https://rbafs.org.br/RBAFS/article/view/15046

Microsoft. (2025). Visual Studio Code documentation. https://code.visualstudio.com/docs

Molena-Fernandes, C. A., et al. (2005). Prevalência de fatores de risco para doenças cardiovasculares em adolescentes de escolas de ensino médio de São José do Rio Preto, SP. Revista Brasileira de Saúde Pública, 39(1).

Organização Pan-Americana da Saúde. (2019). Dez ameaças à saúde que a OMS combaterá em 2019. https://www.paho.org/pt/noticias/17-1-2019-dez-ameacas-saude-que-oms-combatera-em-2019

Organização Pan-Americana da Saúde. (2024, 26 de junho). Cerca de 1,8 bilhão de adultos correm risco de adoecer devido à falta de atividade física. https://www.paho.org/pt/noticias/26-6-2024-cerca-18-bilhao-adultos-correm-risco-adoecer-devido-falta-atividade-fisica

Paiva, L. B., Santos, S. J., & Rego, L. P. (2024). Predição de calorias em alimentos com redes neurais artificiais. Revista Brasileira de Engenharia de Software, 4(1), 45–58.

Portz, J. D., Moore, N., & Bull, S. (2024). Mobile health app utilization and user engagement: A systematic review. Translational Behavioral Medicine, 14(1), 1–13.

Python Software Foundation. (2025). Python documentation. https://docs.python.org/3/

React Native. (2025). React Native documentation. https://reactnative.dev/docs/style

Runrun.it. (s.d.). O que é o Runrun.it. Retirado em 8 de setembro de 2025, de https://runrun.it/

Souza, F. R. N., et al. (2022). Aplicativos para estimular a prática de atividade física em crianças e adolescentes brasileiros. Saúde e Pesquisa, 15(1), e7950. https://periodicos.unicesumar.edu.br/index.php/saudpesq/article/view/7950

Souza, V. L. S. (2023). Análise e classificação nutricional de refeições com visão computacional e inteligência artificial [Tese de Doutorado não publicada]. Universidade Federal de Minas Gerais.

Supabase. (2025). Supabase documentation. https://supabase.com/docs

TypeScript. (2025). TypeScript documentation. https://www.typescriptlang.org/docs/

World Health Organization. (2003). Diet, nutrition and the prevention of chronic diseases. (Report of a Joint WHO/FAO Expert Consultation).

Published

2025-12-05

Issue

Section

Teaching and Education Sciences

How to Cite

Vital Soma - Mobile software for health monitoring and body care. Research, Society and Development, [S. l.], v. 14, n. 12, p. e38141250168, 2025. DOI: 10.33448/rsd-v14i12.50168. Disponível em: https://www.rsdjournal.org/rsd/article/view/50168. Acesso em: 5 dec. 2025.