Vital Soma - Mobile software for health monitoring and body care
DOI:
https://doi.org/10.33448/rsd-v14i12.50168Keywords:
Health, Artificial intelligence, Gamification, Application, Calories.Abstract
The objective of this article is to present a mobile application development project for health promotion, integrating AI and gamification to assist users through accessible and personalized monitoring of nutrition and physical activities. The methodology was structured in stages ranging from requirements gathering to the final system implementation. The application was developed in React Native, using Supabase as the database and Figma for interface design. The AI responsible for calorie estimation was trained in Google Colab, based on a computer vision model and a specialized dataset of food images. The intelligent chatbot, developed with the Gemini API, was designed to provide personalized support regarding nutrition and physical activities. The code adhered to the MVVM architectural pattern, and task management was carried out using the Scrum agile methodology, supported by Runrun.it. In the tests performed, the system showed good performance and stability in the main functionalities, such as activity logging and the evolution ranking, which utilizes gamification elements to motivate the user. It is concluded that the integration between different AI technologies and interactive features enhances engagement and self-care, making nutritional and physical monitoring more accessible, dynamic, and effective.
References
Alves, G. M., & Oliveira, T. C. (2020). A importância da alimentação saudável para o desenvolvimento humano. Humanas Sociais & Aplicadas, 10(27), 46–62.
Berger, B. G., & Tobar, D. A. (2011). Exercise and the quality of life. In T. S. Horn (Ed.), New sport and exercise psychology companion (pp. 483–505). Fitness Information Technology.
Discord Inc. (2025). Discord: Talk, chat, hang out. https://discord.com/
Docker. (2025). Docker documentation. https://docs.docker.com/
Figma. (2025). Figma help center – Documentação oficial do Figma. https://help.figma.com/hc/en-us
Google. (2025f). Gemini API. https://ai.google.dev/docs/gemini_api_overview
Lawrence, J. (2025). Food dataset v18. Roboflow. https://app.roboflow.com/marieli-0wetd/food-v18-oebdi/1https://app.roboflow.com/marieli-0wetd/food-v18-oebdi/1
Manickam, P., et al. (2022). Artificial intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors (Basel), 12(8), 562. https://www.google.com/search?q=https://doi.org/10.3390/bios12080562
Martins, T. B., et al. (2021). Utilização de um aplicativo para smartphone para aumentar o nível de atividade física de adultos e idosos: Um estudo com grupo focal. Revista Brasileira de Atividade Física & Saúde, 26, 1–9. https://rbafs.org.br/RBAFS/article/view/15046
Microsoft. (2025). Visual Studio Code documentation. https://code.visualstudio.com/docs
Molena-Fernandes, C. A., et al. (2005). Prevalência de fatores de risco para doenças cardiovasculares em adolescentes de escolas de ensino médio de São José do Rio Preto, SP. Revista Brasileira de Saúde Pública, 39(1).
Organização Pan-Americana da Saúde. (2019). Dez ameaças à saúde que a OMS combaterá em 2019. https://www.paho.org/pt/noticias/17-1-2019-dez-ameacas-saude-que-oms-combatera-em-2019
Organização Pan-Americana da Saúde. (2024, 26 de junho). Cerca de 1,8 bilhão de adultos correm risco de adoecer devido à falta de atividade física. https://www.paho.org/pt/noticias/26-6-2024-cerca-18-bilhao-adultos-correm-risco-adoecer-devido-falta-atividade-fisica
Paiva, L. B., Santos, S. J., & Rego, L. P. (2024). Predição de calorias em alimentos com redes neurais artificiais. Revista Brasileira de Engenharia de Software, 4(1), 45–58.
Portz, J. D., Moore, N., & Bull, S. (2024). Mobile health app utilization and user engagement: A systematic review. Translational Behavioral Medicine, 14(1), 1–13.
Python Software Foundation. (2025). Python documentation. https://docs.python.org/3/
React Native. (2025). React Native documentation. https://reactnative.dev/docs/style
Runrun.it. (s.d.). O que é o Runrun.it. Retirado em 8 de setembro de 2025, de https://runrun.it/
Souza, F. R. N., et al. (2022). Aplicativos para estimular a prática de atividade física em crianças e adolescentes brasileiros. Saúde e Pesquisa, 15(1), e7950. https://periodicos.unicesumar.edu.br/index.php/saudpesq/article/view/7950
Souza, V. L. S. (2023). Análise e classificação nutricional de refeições com visão computacional e inteligência artificial [Tese de Doutorado não publicada]. Universidade Federal de Minas Gerais.
Supabase. (2025). Supabase documentation. https://supabase.com/docs
TypeScript. (2025). TypeScript documentation. https://www.typescriptlang.org/docs/
World Health Organization. (2003). Diet, nutrition and the prevention of chronic diseases. (Report of a Joint WHO/FAO Expert Consultation).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Marieli Buri da Silva, Nelson Lourenço da Trindade Neto, Miguel Mella Silva, Felipe Henrique de Oliveira Cândido, Elaine Pasqualini, Isaque Katahira, Jéssica Antonio Delgado

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
